
Sound Dynamic Deadlock Prediction in Linear Time

Hünkar Can Tunç Umang Mathur

Andreas Pavlogiannis Mahesh Viswanathan



The Problem

t1 t2

1 acquire(`1)
2 acquire(`2)
3 request(`2)
4 request(`1)

(Resource) Deadlock!

1



The Problem

t1 t2

1 acquire(`1)

2 acquire(`2)
3 request(`2)
4 request(`1)

(Resource) Deadlock!

1



The Problem

t1 t2

1 acquire(`1)
2 acquire(`2)

3 request(`2)
4 request(`1)

(Resource) Deadlock!

1



The Problem

t1 t2

1 acquire(`1)
2 acquire(`2)
3 request(`2)

4 request(`1)

(Resource) Deadlock!

1



The Problem

t1 t2

1 acquire(`1)
2 acquire(`2)
3 request(`2)
4 request(`1)

(Resource) Deadlock!

1



The Problem

t1 t2

1 acquire(`1)
2 acquire(`2)
3 request(`2)
4 request(`1)

(Resource) Deadlock!

1



Dynamic Analysis

-- <> --

-- <> --

Program

Execution

Bug Found

Not Found

- Effective method for finding concurrency bugs

- Widely adopted (e.g., ThreadSanitizer, Helgrind)

- Traditional techniques:

↪→ Analyze the current execution

- Predictive techniques:

↪→ Analyze the current execution + infer alternates

2



Dynamic Analysis

-- <> --

-- <> --

Program

Execution

Bug Found

Not Found

- Effective method for finding concurrency bugs

- Widely adopted (e.g., ThreadSanitizer, Helgrind)

- Traditional techniques:

↪→ Analyze the current execution

- Predictive techniques:

↪→ Analyze the current execution + infer alternates
2



Predictive Analysis

t1 t2

1 acquire(`1)
2 acquire(`2)
3 release(`2)
4 release(`1)
5 acquire(`2)
6 acquire(`1)
7 release(`1)
8 release(`2)

Observed trace
No deadlock

3



Predictive Analysis

t1 t2

1 acquire(`1)
2 acquire(`2)
3 release(`2)
4 release(`1)
5 acquire(`2)
6 acquire(`1)
7 release(`1)
8 release(`2)

t1 t2

1 acquire(`2)
2 acquire(`1)
3 acquire(`2) acquire(`1)

reordering

Observed trace
No deadlock

Reordered trace
Deadlock!

3



Contributions

- We study the problem of dynamic deadlock prediction

- Main results:

- Complexity characterization

↪→ Tradeoff between efficiency and precision is unavoidable

- Novel algorithms

↪→ Strike a good balance between efficiency and precision

- Empirical evaluation

↪→ Outperform state-of-the-art techniques

4



Dynamic Deadlock Prediction

State-of-the-art

- SeqCheck1:

- Sound but incomplete

- High polynomial complexity

↪→ Õ(N 4)

- Dirk2:

- Sound and complete

- Heavyweight SMT solving

This work

- Sync-Preserving Deadlocks:

- Sound but incomplete

- (Nearly) Linear time algorithm

↪→ Õ(N )

↪→ Wrt. number of events

Focus is on identifying real deadlocks!

1Yan Cai, Hao Yun, Jinqiu Wang, Lei Qiao, Jens Palsberg. Sound and efficient concurrency bug prediction. ESEC/FSE’21
-
2Christian Gram Kalhauge, Jens Palsberg. Sound deadlock prediction. OOPSLA’18

5



Dynamic Deadlock Prediction

State-of-the-art

- SeqCheck1:

- Sound but incomplete

- High polynomial complexity

↪→ Õ(N 4)

- Dirk2:

- Sound and complete

- Heavyweight SMT solving

This work

- Sync-Preserving Deadlocks:

- Sound but incomplete

- (Nearly) Linear time algorithm

↪→ Õ(N )

↪→ Wrt. number of events

Focus is on identifying real deadlocks!

1Yan Cai, Hao Yun, Jinqiu Wang, Lei Qiao, Jens Palsberg. Sound and efficient concurrency bug prediction. ESEC/FSE’21
-
2Christian Gram Kalhauge, Jens Palsberg. Sound deadlock prediction. OOPSLA’18

5



Dynamic Deadlock Prediction

State-of-the-art

- SeqCheck1:

- Sound but incomplete

- High polynomial complexity

↪→ Õ(N 4)

- Dirk2:

- Sound and complete

- Heavyweight SMT solving

This work

- Sync-Preserving Deadlocks:

- Sound but incomplete

- (Nearly) Linear time algorithm

↪→ Õ(N )

↪→ Wrt. number of events

Focus is on identifying real deadlocks!

1Yan Cai, Hao Yun, Jinqiu Wang, Lei Qiao, Jens Palsberg. Sound and efficient concurrency bug prediction. ESEC/FSE’21
-
2Christian Gram Kalhauge, Jens Palsberg. Sound deadlock prediction. OOPSLA’18

5



Predictive Analysis

Two steps of predictive analysis:

−→

1O Identify potential buggy events

2O Check if the potential bug can be realized

6



Predictive Analysis

Two steps of predictive analysis:

−→ 1O Identify potential buggy events

2O Check if the potential bug can be realized

6



Potential Deadlocks

- Potential deadlocks:

- Cyclic lock acquisition patterns

↪→ `1, `2

- Not protected by a common lock

↪→ No such `3

- Necessary but insufficient for an actual deadlock

↪→ Control flow/data flow dependencies

t1 t2

1 . . .

2 acquire(`1)
3 acquire(`2)
4 . . .

5 release(`2)
6 release(`1)
7 . . .

8 . . .

9 acquire(`2)
10 acquire(`1)
11 release(`1)
12 release(`2)
13 . . .

7



Potential Deadlocks

- Potential deadlocks:

- Cyclic lock acquisition patterns

↪→ `1, `2

- Not protected by a common lock

↪→ No such `3

- Necessary but insufficient for an actual deadlock

↪→ Control flow/data flow dependencies

t1 t2

1 acquire(`3)
2 acquire(`1)
3 acquire(`2)
4 . . .

5 release(`2)
6 release(`1)
7 release(`3)
8 acquire(`3)
9 acquire(`2)

10 acquire(`1)
11 release(`1)
12 release(`2)
13 release(`3)

7



Potential Deadlocks

- Potential deadlocks:

- Cyclic lock acquisition patterns

↪→ `1, `2

- Not protected by a common lock

↪→ No such `3

- Necessary but insufficient for an actual deadlock

↪→ Control flow/data flow dependencies

t1 t2

1 . . .

2 acquire(`1)
3 acquire(`2)
4 write(x)
5 release(`2)
6 release(`1)
7 . . .

8 read(x)
9 acquire(`2)

10 acquire(`1)
11 release(`1)
12 release(`2)
13 . . .

7



Potential Deadlocks

- Our first result:

- Identifying potential deadlocks is intractable

↪→ NP-hard

- Our solution:

- Abstraction that groups potential deadlocks

↪→ Abstract lock graph

8



Potential Deadlocks

- Our first result:

- Identifying potential deadlocks is intractable

↪→ NP-hard

- Our solution:

- Abstraction that groups potential deadlocks

↪→ Abstract lock graph

8



Abstract Lock Graph

Potential deadlocks: 〈e2, e9〉, 〈e4, e9〉

t1 t2 t3

1 acquire(`1)
2 acquire(`2)
3 release(`2)
4 acquire(`2)
5 release(`2)
6 release(`1)
7 acquire(`3)
8 acquire(`2)
9 acquire(`1)

10 release(`1)
11 release(`2)
12 release(`3)
13 acquire(`3)
14 acquire(`1)
15 acquire(`2)
16 release(`2)
17 release(`1)
18 release(`3)

t1, `2, {`1}
〈e2, e4〉

t2, `2, {`3}
〈e8〉

t2, `1, {`2, `3}
〈e9〉

t3, `1, {`3}
〈e14〉

t3, `2, {`1, `3}
〈e15〉

Thread, Lock, { Locks Held }, 〈Events〉

Observed trace Abstract Lock Graph
9



Abstract Lock Graph

Potential deadlocks: 〈e2, e9〉, 〈e4, e9〉

t1 t2 t3

1 acquire(`1)
2 acquire(`2)
3 release(`2)
4 acquire(`2)
5 release(`2)
6 release(`1)
7 acquire(`3)
8 acquire(`2)
9 acquire(`1)

10 release(`1)
11 release(`2)
12 release(`3)
13 acquire(`3)
14 acquire(`1)
15 acquire(`2)
16 release(`2)
17 release(`1)
18 release(`3)

t1, `2, {`1}
〈e2, e4〉

t2, `2, {`3}
〈e8〉

t2, `1, {`2, `3}
〈e9〉

t3, `1, {`3}
〈e14〉

t3, `2, {`1, `3}
〈e15〉

Thread, Lock, { Locks Held }, 〈Events〉

Observed trace Abstract Lock Graph
9



Predictive Analysis

Two steps of predictive analysis:

1O Identify potential buggy events X

−→ 2O Check if the potential bug can be realized

10



Predicting Deadlocks

Potential deadlock −→ Real deadlock?

t1 t2

1 acquire(`1)
2 write(x)
3 acquire(`2)
4 release(`2)
5 release(`1)
6 acquire(`2)
7 read(x)
8 acquire(`1)
9 release(`1)

10 release(`2)

Observed trace

No deadlock

11



Predicting Deadlocks

Potential deadlock −→ Real deadlock X

t1 t2

1 acquire(`1)
2 write(x)
3 acquire(`2)
4 release(`2)
5 release(`1)
6 acquire(`2)
7 read(x)
8 acquire(`1)
9 release(`1)

10 release(`2)

t1 t2

1 acquire(`2)
2 acquire(`1)
3 write(x)
4 read(x)
5 acquire(`2) acquire(`1)

reordering

Observed trace

No deadlock

Witness trace

Deadlock!

11



Predicting Deadlocks

- Our second result: (Given a potential deadlock)

- Sound and complete deadlock prediction is intractable

↪→ NP-hard

- General solution:

- Consider a restricted problem setting to gain efficiency

↪→ Look for a subset of deadlocks

- Challenge:

- Restrictions should satisfy the following two properties

↪→ Enable efficient analysis

↪→ Retain high precision

12



Predicting Deadlocks

- Our second result: (Given a potential deadlock)

- Sound and complete deadlock prediction is intractable

↪→ NP-hard

- General solution:

- Consider a restricted problem setting to gain efficiency

↪→ Look for a subset of deadlocks

- Challenge:

- Restrictions should satisfy the following two properties

↪→ Enable efficient analysis

↪→ Retain high precision

12



Predicting Deadlocks

- Our second result: (Given a potential deadlock)

- Sound and complete deadlock prediction is intractable

↪→ NP-hard

- General solution:

- Consider a restricted problem setting to gain efficiency

↪→ Look for a subset of deadlocks

- Challenge:

- Restrictions should satisfy the following two properties

↪→ Enable efficient analysis

↪→ Retain high precision

12



Sync-Preserving Deadlocks

- Adapted from data races1

- Subset of deadlocks

↪→ More conservative restrictions on the allowed reorderings

- Enables efficient analysis

1Umang Mathur, Andreas Pavlogiannis, Mahesh Viswanathan. Optimal Prediction of Synchronization-Preserving

Races. POPL’21

13



Sync-Preserving Deadlocks

t1 t2 t3

1 acquire(`2)
2 acquire(`1)
3 write(x)
4 release(`1)
5 release(`2)
6 acquire(`1)
7 read(x)
8 release(`1)
9 acquire(`1)

10 acquire(`2)
11 release(`2)
12 release(`1)

Observed trace

t1 t2 t3

1 acquire(`2)
2 acquire(`1)
3 acquire(`1)
4 read(x)
5 release(`1)
6 acquire(`1)
7 acquire(`2)

Sync-Preserving Deadlock

Order of acquire events on the same lock that occur in the witness are maintained

14



Sync-Preserving Deadlocks

t1 t2 t3

1 acquire(`2)
2 acquire(`1)
3 write(x)
4 release(`1)
5 release(`2)
6 acquire(`1)
7 read(x)
8 release(`1)
9 acquire(`1)

10 acquire(`2)
11 release(`2)
12 release(`1)

Observed trace

t1 t2 t3

1 acquire(`2)
2 acquire(`1)
3 acquire(`1)
4 read(x)
5 release(`1)
6 acquire(`1)
7 acquire(`2)

Sync-Preserving Deadlock

Order of acquire events on the same lock that occur in the witness are maintained

14



Sync-Preserving Deadlocks

t1 t2 t3

1 acquire(`2)
2 acquire(`1)
3 write(x)
4 release(`1)
5 release(`2)
6 acquire(`1)
7 read(x)
8 release(`1)
9 acquire(`1)

10 acquire(`2)
11 release(`2)
12 release(`1)

Observed trace

t1 t2 t3

1 acquire(`2)
2 acquire(`1)
3 acquire(`1)
4 read(x)
5 release(`1)
6 acquire(`1)
7 acquire(`2)

Sync-Preserving Deadlock

Order of acquire events on the same lock that occur in the witness are maintained

14



Interplay With Abstract Lock Graph

Overall
Linear

Potential deadlocks:

〈e2, e9〉, 〈e4, e9〉
t1 t2 t3

1 acquire(`1)
2 acquire(`2)
3 release(`2)
4 acquire(`2)
5 release(`2)
6 release(`1)
7 acquire(`3)
8 acquire(`2)
9 acquire(`1)

10 release(`1)
11 release(`2)
12 release(`3)
13 acquire(`3)
14 acquire(`1)
15 acquire(`2)
16 release(`2)
17 release(`1)
18 release(`3)

t1, `2, {`1}
〈e2, e4〉

t2, `1, {`2, `3}
〈e9〉

- Number of checks per cycle:

↪→ Naive approach: Exponential

↪→ Sync-preserving deadlocks: Linear

- Time spent per check:

↪→ All deadlocks: Exponential

↪→ Sync-preserving deadlocks: Linear

How much precision have we lost?

15



Interplay With Abstract Lock Graph

Overall
Linear

Potential deadlocks:

〈e2, e9〉, 〈e4, e9〉
t1 t2 t3

1 acquire(`1)
2 acquire(`2)
3 release(`2)
4 acquire(`2)
5 release(`2)
6 release(`1)
7 acquire(`3)
8 acquire(`2)
9 acquire(`1)

10 release(`1)
11 release(`2)
12 release(`3)
13 acquire(`3)
14 acquire(`1)
15 acquire(`2)
16 release(`2)
17 release(`1)
18 release(`3)

t1, `2, {`1}
〈e2, e4〉

t2, `1, {`2, `3}
〈e9〉

- Number of checks per cycle:

↪→ Naive approach: Exponential

↪→ Sync-preserving deadlocks: Linear

- Time spent per check:

↪→ All deadlocks: Exponential

↪→ Sync-preserving deadlocks: Linear

How much precision have we lost?

15



Interplay With Abstract Lock Graph

Overall
Linear

Potential deadlocks:

〈e2, e9〉, 〈e4, e9〉
t1 t2 t3

1 acquire(`1)
2 acquire(`2)
3 release(`2)
4 acquire(`2)
5 release(`2)
6 release(`1)
7 acquire(`3)
8 acquire(`2)
9 acquire(`1)

10 release(`1)
11 release(`2)
12 release(`3)
13 acquire(`3)
14 acquire(`1)
15 acquire(`2)
16 release(`2)
17 release(`1)
18 release(`3)

t1, `2, {`1}
〈e2, e4〉

t2, `1, {`2, `3}
〈e9〉

- Number of checks per cycle:

↪→ Naive approach: Exponential

↪→ Sync-preserving deadlocks: Linear

- Time spent per check:

↪→ All deadlocks: Exponential

↪→ Sync-preserving deadlocks: Linear

How much precision have we lost?

15



Interplay With Abstract Lock Graph

Overall
Linear

Potential deadlocks:

〈e2, e9〉, 〈e4, e9〉
t1 t2 t3

1 acquire(`1)
2 acquire(`2)
3 release(`2)
4 acquire(`2)
5 release(`2)
6 release(`1)
7 acquire(`3)
8 acquire(`2)
9 acquire(`1)

10 release(`1)
11 release(`2)
12 release(`3)
13 acquire(`3)
14 acquire(`1)
15 acquire(`2)
16 release(`2)
17 release(`1)
18 release(`3)

t1, `2, {`1}
〈e2, e4〉

t2, `1, {`2, `3}
〈e9〉

- Number of checks per cycle:

↪→ Naive approach: Exponential

↪→ Sync-preserving deadlocks: Linear

- Time spent per check:

↪→ All deadlocks: Exponential

↪→ Sync-preserving deadlocks: Linear

How much precision have we lost?

15



Interplay With Abstract Lock Graph

Overall
Linear

Potential deadlocks:

〈e2, e9〉, 〈e4, e9〉
t1 t2 t3

1 acquire(`1)
2 acquire(`2)
3 release(`2)
4 acquire(`2)
5 release(`2)
6 release(`1)
7 acquire(`3)
8 acquire(`2)
9 acquire(`1)

10 release(`1)
11 release(`2)
12 release(`3)
13 acquire(`3)
14 acquire(`1)
15 acquire(`2)
16 release(`2)
17 release(`1)
18 release(`3)

t1, `2, {`1}
〈e2, e4〉

t2, `1, {`2, `3}
〈e9〉

- Number of checks per cycle:

↪→ Naive approach: Exponential

↪→ Sync-preserving deadlocks: Linear

- Time spent per check:

↪→ All deadlocks: Exponential

↪→ Sync-preserving deadlocks: Linear

How much precision have we lost?

15



Experimental Results - Offline

- Implemented Sync-preserving Offline

↪→ Postmortem analysis

- Compared with SeqCheck and Dirk

- 48 benchmark traces

↪→ Based on standard Java benchmark suites

Dirk SeqCheck Sync-preserving Offline

Total Deadlocks 35 40 40
Total Time > 1000 minutes 46 minutes 3 minutes

- False negative analysis: Only one actual deadlock is missed!

↪→ Based on the standard notion of valid reorderings

16



Experimental Results - Offline

- Implemented Sync-preserving Offline

↪→ Postmortem analysis

- Compared with SeqCheck and Dirk

- 48 benchmark traces

↪→ Based on standard Java benchmark suites

Dirk SeqCheck Sync-preserving Offline

Total Deadlocks 35 40 40
Total Time > 1000 minutes 46 minutes 3 minutes

- False negative analysis: Only one actual deadlock is missed!

↪→ Based on the standard notion of valid reorderings
16



Online Algorithm

- Online setting −→ On-the-fly analysis

- No predictive online method

- Non-predictive online techniques:

↪→ Schedule fuzzing

- Our work:

↪→ Prediction + schedule fuzzing

17



Experimental Results - Online

- Implemented Sync-preserving Online

- Compared with DeadlockFuzzer

- 38 benchmarks

↪→ Based on standard Java benchmark suites

DeadlockFuzzer Sync-preserving Online

Total Deadlock Hits 2076 7633
Total Unique Deadlocks 42 49

18



Conclusion

This work:

- Complexity characterization:

↪→ Finding potential deadlocks is intractable

↪→ Realizing potential deadlocks is intractable

- Sync-preserving deadlocks:

↪→ Achieves efficiency and high precision

↪→ Outperforms state-of-the-art

Thank you!

19



Conclusion

This work:

- Complexity characterization:

↪→ Finding potential deadlocks is intractable

↪→ Realizing potential deadlocks is intractable

- Sync-preserving deadlocks:

↪→ Achieves efficiency and high precision

↪→ Outperforms state-of-the-art

Thank you!

19



Conclusion

This work:

- Complexity characterization:

↪→ Finding potential deadlocks is intractable

↪→ Realizing potential deadlocks is intractable

- Sync-preserving deadlocks:

↪→ Achieves efficiency and high precision

↪→ Outperforms state-of-the-art

Thank you!

19


