
Optimal Reads-From Consistency Checking for C11-Style

Memory Models

Hünkar Can Tunç Parosh Aziz Abdulla Soham Chakraborty

Shankaranarayanan Krishna Umang Mathur Andreas Pavlogiannis



Overview

Scenario I

x := 0, y := 0

Thread 1

x := 1
a := y

Thread 2

y := 1

b := x

Scenario II

x := 0, y := 0

Thread 1

x := 1
a := y

Thread 2

y := 1

b := x

Under sequential consistency:

- Is Scenario I possible?

↪→ a = b = 0

7

- Is Scenario II possible?

↪→ a = b = 1

X

1



Overview

Scenario I

x := 0, y := 0

Thread 1

x := 1
a := y

Thread 2

y := 1

b := x

Scenario II

x := 0, y := 0

Thread 1

x := 1
a := y

Thread 2

y := 1

b := x

Under sequential consistency:

- Is Scenario I possible?

↪→ a = b = 0

7

- Is Scenario II possible?

↪→ a = b = 1

X

1



Overview

Scenario I

x := 0, y := 0

Thread 1

x := 1
a := y

Thread 2

y := 1

b := x

Scenario II

x := 0, y := 0

Thread 1

x := 1
a := y

Thread 2

y := 1

b := x

Under sequential consistency:

- Is Scenario I possible?

↪→ a = b = 0 7

- Is Scenario II possible?

↪→ a = b = 1

X

1



Overview

Scenario I

x := 0, y := 0

Thread 1

x := 1
a := y

Thread 2

y := 1

b := x

Scenario II

x := 0, y := 0

Thread 1

x := 1
a := y

Thread 2

y := 1

b := x

Under sequential consistency:

- Is Scenario I possible?

↪→ a = b = 0 7

- Is Scenario II possible?

↪→ a = b = 1

X

1



Overview

Scenario I

x := 0, y := 0

Thread 1

x := 1
a := y

Thread 2

y := 1

b := x

Scenario II

x := 0, y := 0

Thread 1

x := 1
a := y

Thread 2

y := 1

b := x

Under sequential consistency:

- Is Scenario I possible?

↪→ a = b = 0 7

- Is Scenario II possible?

↪→ a = b = 1 X
1



Overview

Reads-From consistency checking:

- Input: Partial execution X in a memory model M
- Task: Check if X can be consistent in M
- Practical applications:

↪→ Model checking, testing

- Well understood for traditional memory models

↪→ Sequential consistency, x86-TSO

- Little is known about the variants of C11 memory model

↪→ This work fills this gap!

2



Overview

Reads-From consistency checking:

- Input: Partial execution X in a memory model M
- Task: Check if X can be consistent in M

- Practical applications:

↪→ Model checking, testing

- Well understood for traditional memory models

↪→ Sequential consistency, x86-TSO

- Little is known about the variants of C11 memory model

↪→ This work fills this gap!

2



Overview

Reads-From consistency checking:

- Input: Partial execution X in a memory model M
- Task: Check if X can be consistent in M
- Practical applications:

↪→ Model checking, testing

- Well understood for traditional memory models

↪→ Sequential consistency, x86-TSO

- Little is known about the variants of C11 memory model

↪→ This work fills this gap!

2



Overview

Reads-From consistency checking:

- Input: Partial execution X in a memory model M
- Task: Check if X can be consistent in M
- Practical applications:

↪→ Model checking, testing

- Well understood for traditional memory models

↪→ Sequential consistency, x86-TSO

- Little is known about the variants of C11 memory model

↪→ This work fills this gap!

2



Overview

Reads-From consistency checking:

- Input: Partial execution X in a memory model M
- Task: Check if X can be consistent in M
- Practical applications:

↪→ Model checking, testing

- Well understood for traditional memory models

↪→ Sequential consistency, x86-TSO

- Little is known about the variants of C11 memory model

↪→ This work fills this gap!

2



Overview

Reads-From consistency checking:

- Input: Partial execution X in a memory model M
- Task: Check if X can be consistent in M
- Practical applications:

↪→ Model checking, testing

- Well understood for traditional memory models

↪→ Sequential consistency, x86-TSO

- Little is known about the variants of C11 memory model

↪→ This work fills this gap!

2



Contributions

- We study reads-from consistency checking in various variants of C11

- Main results:

- Efficient algorithms

↪→ Optimal or nearly-optimal

- Complexity characterization

↪→ Fine-grained optimality or NP-hardness results

- Empirical evaluation

↪→ Shows the impact of new algorithms in practice

3



C11 Memory Model

- Introduced by the ISO C/C++ 2011 standards

- Support for low-level atomic operations

↪→ Load, Store, RMW

↪→ Used for communication between threads

- Memory accesses levels:

↪→ Synchronization guarantees

↪→ Implementation cost

atomic<int> x (0);

x.store(1, memory order relaxed);

x.load(memory order acquire);

Sequentially consistent

AcquireRelease

Relaxed

4



C11 Memory Model

- Introduced by the ISO C/C++ 2011 standards

- Support for low-level atomic operations

↪→ Load, Store, RMW

↪→ Used for communication between threads

- Memory accesses levels:

↪→ Synchronization guarantees

↪→ Implementation cost

atomic<int> x (0);

x.store(1, memory order relaxed);

x.load(memory order acquire);

Sequentially consistent

AcquireRelease

Relaxed

4



C11 Memory Model

- Introduced by the ISO C/C++ 2011 standards

- Support for low-level atomic operations

↪→ Load, Store, RMW

↪→ Used for communication between threads

- Memory accesses levels:

↪→ Synchronization guarantees

↪→ Implementation cost

atomic<int> x (0);

x.store(1, memory order relaxed);

x.load(memory order acquire);

Sequentially consistent

AcquireRelease

Relaxed

4



C11 Memory Model

- Semantics of a program is defined as a set of consistent executions

- Each execution is a graph

↪→ Nodes are instructions in the program

↪→ Edges represent certain relations among the instructions

Thread 1 Thread 2
x := 0;

a := x ;

y := 1;

y := 0;

b := y ;

x := 1;

Thread 1 Thread 2

W(x , 0)

R(x , 1)

W(y , 1)

W(y , 0)

R(y , 1)

W(x , 1)

5



C11 Memory Model

- Standard relations:

↪→ Program order (po): Precedence among the same thread events

↪→ Reads-from (rf): Relates the writes to the loads which read their value

↪→ Modification order (mo): A total order of the writes on a given location

Thread 1 Thread 2

x := 0;

a := x ;

y := 1;

y := 0;

b := y ;

x := 1;

Thread 1 Thread 2

W(x , 0)

R(x , ?)

W(y , 1)

W(y , 0)

R(y , ?)

W(x , 1)

po po

po po

rfrf
momo

6



C11 Memory Model

- Standard relations:

↪→ Program order (po): Precedence among the same thread events

↪→ Reads-from (rf): Relates the writes to the loads which read their value

↪→ Modification order (mo): A total order of the writes on a given location

Thread 1 Thread 2

x := 0;

a := x ;

y := 1;

y := 0;

b := y ;

x := 1;

Thread 1 Thread 2

W(x , 0)

R(x , 1)

W(y , 1)

W(y , 0)

R(y , 1)

W(x , 1)

po po

po po

rfrf

momo

6



C11 Memory Model

- Standard relations:

↪→ Program order (po): Precedence among the same thread events

↪→ Reads-from (rf): Relates the writes to the loads which read their value

↪→ Modification order (mo): A total order of the writes on a given location

Thread 1 Thread 2

x := 0;

a := x ;

y := 1;

y := 0;

b := y ;

x := 1;

Thread 1 Thread 2

W(x , 0)

R(x , ?)

W(y , 1)

W(y , 0)

R(y , ?)

W(x , 1)

po po

po po
rfrf

momo

6



C11-Style Memory Models

- A memory model restricts which executions are consistent

W(x , 0)

R(x , 1)

W(y , 1)

W(y , 0)

R(y , 1)

W(x , 1)

po po

po po
rfrf

po po

po po

rfrf

mo mo

Memory model M1 : acyclic(po ∪mo)

−→ Consistent in M1 X

Memory model M2 : acyclic(po ∪mo) ∧ acyclic(po ∪ rf)

−→ Not consistent in M2 7

7



C11-Style Memory Models

- A memory model restricts which executions are consistent

W(x , 0)

R(x , 1)

W(y , 1)

W(y , 0)

R(y , 1)

W(x , 1)

po po

po po
rfrf

po po

po po

rfrf

mo mo

Memory model M1 : acyclic(po ∪mo)

−→ Consistent in M1 X

Memory model M2 : acyclic(po ∪mo) ∧ acyclic(po ∪ rf)

−→ Not consistent in M2 7

7



C11-Style Memory Models

- A memory model restricts which executions are consistent

W(x , 0)

R(x , 1)

W(y , 1)

W(y , 0)

R(y , 1)

W(x , 1)

po po

po po
rfrf

po po

po po

rfrf

mo mo

Memory model M1 : acyclic(po ∪mo)

−→ Consistent in M1 X

Memory model M2 : acyclic(po ∪mo) ∧ acyclic(po ∪ rf)

−→ Not consistent in M2 7

7



C11-Style Memory Models

- A memory model restricts which executions are consistent

W(x , 0)

R(x , 1)

W(y , 1)

W(y , 0)

R(y , 1)

W(x , 1)

po po

po po
rfrf

po po

po po

rfrf

mo mo

Memory model M1 : acyclic(po ∪mo)

−→ Consistent in M1 X

Memory model M2 : acyclic(po ∪mo) ∧ acyclic(po ∪ rf)

−→ Not consistent in M2 7

7



C11-Style Memory Models

- A memory model restricts which executions are consistent

W(x , 0)

R(x , 1)

W(y , 1)

W(y , 0)

R(y , 1)

W(x , 1)

po po

po po
rfrf

po po

po po

rfrf

mo mo

Memory model M1 : acyclic(po ∪mo)

−→ Consistent in M1 X

Memory model M2 : acyclic(po ∪mo) ∧ acyclic(po ∪ rf)

−→ Not consistent in M2 7

7



Reads-From Consistency Checking

- Input: A partial execution X in a memory model M
↪→ X contains po and rf

↪→ X lacks mo

- Task: Check if X can be extended to a complete execution consistent in M
↪→ Find an mo that turns X consistent

8



Reads-From Consistency Checking

- Input: A partial execution X in a memory model M
↪→ X contains po and rf

↪→ X lacks mo

- Task: Check if X can be extended to a complete execution consistent in M
↪→ Find an mo that turns X consistent

8



RC20 Memory Model

- Captures a rich fragment of C11

↪→ Contains Release, Acquire and Relaxed accesses

↪→ Lacks Sequentially Consistent accesses

- Reads-from consistency checking is a bottleneck

- Previous works: O(n3 · k), O(n2 · k)

↪→ For n events and k threads

- Our result: O(n · k)

↪→ Key idea: minimal coherence witness relation

9



RC20 Memory Model

- Captures a rich fragment of C11

↪→ Contains Release, Acquire and Relaxed accesses

↪→ Lacks Sequentially Consistent accesses

- Reads-from consistency checking is a bottleneck

- Previous works: O(n3 · k), O(n2 · k)

↪→ For n events and k threads

- Our result: O(n · k)

↪→ Key idea: minimal coherence witness relation

9



RC20 Memory Model

- Captures a rich fragment of C11

↪→ Contains Release, Acquire and Relaxed accesses

↪→ Lacks Sequentially Consistent accesses

- Reads-from consistency checking is a bottleneck

- Previous works: O(n3 · k), O(n2 · k)

↪→ For n events and k threads

- Our result: O(n · k)

↪→ Key idea: minimal coherence witness relation

9



Witness Relation

Witness relation

↪→ Serves as a witness for consistency

↪→ Construct a partially ordered mo

↪→ Include necessary orderings enforced by the memory model

↪→ It should be extendable to a total mo

Recall −→
Reads-from consistency checking:

↪→ Task is to find an mo

↪→ mo is a total order on the same location writes

10



Witness Relation

Witness relation

↪→ Serves as a witness for consistency

↪→ Construct a partially ordered mo

↪→ Include necessary orderings enforced by the memory model

↪→ It should be extendable to a total mo

Recall −→
Reads-from consistency checking:

↪→ Task is to find an mo

↪→ mo is a total order on the same location writes

10



Witness Relation

W1(x) W2(x)

R(x)

W3(x)

porf

mo

- W2(x) must be mo ordered before W1(x)

- W3(x) is not relevant

↪→ It can be left unordered

- Witness should always be extendable to a total mo

↪→ W3(x)
mo
999K W2(x)

↪→ W1(x)
mo
999K W3(x)

11



Witness Relation

W1(x) W2(x)

R(x)

W3(x)

porf

mo

- W2(x) must be mo ordered before W1(x)

- W3(x) is not relevant

↪→ It can be left unordered

- Witness should always be extendable to a total mo

↪→ W3(x)
mo
999K W2(x)

↪→ W1(x)
mo
999K W3(x)

11



Witness Relation

W1(x) W2(x)

R(x)

W3(x)

porf

mo

- W2(x) must be mo ordered before W1(x)

- W3(x) is not relevant

↪→ It can be left unordered

- Witness should always be extendable to a total mo

↪→ W3(x)
mo
999K W2(x)

↪→ W1(x)
mo
999K W3(x)

11



Witness Relation

W1(x) W2(x)

R(x)

W3(x)

porf

mo

- W2(x) must be mo ordered before W1(x)

- W3(x) is not relevant

↪→ It can be left unordered

- Witness should always be extendable to a total mo

↪→ W3(x)
mo
999K W2(x)

↪→ W1(x)
mo
999K W3(x)

11



Minimal Coherence for RC20

Minimal coherence

↪→ Serves as a witness for consistency

↪→ Weaker than prior witness relations

↪→ Allows efficient consistency checking algorithm for RC20

12



Minimal Coherence for RC20

Minimal coherence Prior witness relations

W(x)

RMW(x)

RMW(x)

R(x)

RMW(x)

W(x)

po

rf

rf

rf

rf

mo

W(x)

RMW(x)

RMW(x)

R(x)

RMW(x)

W(x)

po

rf

rf

rf

rf

mo

mo

- Minimal coherence is weaker!

↪→ More efficient to compute

13



Minimal Coherence for RC20

Minimal coherence Prior witness relations

W(x)

RMW(x)

RMW(x)

R(x)

RMW(x)

W(x)

po

rf

rf

rf

rf

mo W(x)

RMW(x)

RMW(x)

R(x)

RMW(x)

W(x)

po

rf

rf

rf

rf

mo

mo

- Minimal coherence is weaker!

↪→ More efficient to compute

13



Minimal Coherence for RC20

Minimal coherence Prior witness relations

W(x)

RMW(x)

RMW(x)

R(x)

RMW(x)

W(x)

po

rf

rf

rf

rf

mo W(x)

RMW(x)

RMW(x)

R(x)

RMW(x)

W(x)

po

rf

rf

rf

rf

mo

mo

- Minimal coherence is weaker!

↪→ More efficient to compute

13



Minimal Coherence for RC20

Minimal coherence Prior witness relations

W(x)

RMW(x)

RMW(x)

R(x)

RMW(x)

W(x)

po

rf

rf

rf

rf

mo W(x)

RMW(x)

RMW(x)

R(x)

RMW(x)

W(x)

po

rf

rf

rf

rf

mo

mo

- Minimal coherence is weaker!

↪→ More efficient to compute

13



Experimental Results

- Focused on the RC20/Release-Acquire (RA) fragments

↪→ RA is a fragment of RC20

- Performed an evaluation in two scenarios

↪→ Model checking

↪→ Testing

- Modified only the consistency checking components

14



Experimental Results - Model Checking

- Implemented minimal coherence inside GenMC1

- Compared with the original GenMC

↪→ 25 standard benchmarks

↪→ 2 hour timeout

GenMC Our Algorithm

Average time per execution 14.5 sec 0.26 sec

Total number of executions 356K 4.6M

1Michalis Kokologiannakis, Viktor Vafeiadis. GenMC: A Model Checker for Weak Memory Models. CAV’21

15



Experimental Results - Testing

- Implemented minimal coherence inside C11Tester1

↪→ Online version

↪→ O(n · k) bound does not apply

- Compared with the original C11Tester

↪→ 32 standard benchmarks

C11Tester Our Algorithm

Total analysis time 286 sec 170 sec

1Weiyu Luo, Brian Demsky. C11Tester: a race detector for C/C++ atomics. ASPLOS’21

16



Summary of Established Bounds

- NP-hard: O(k · nk+1) n −→ number of events

↪→ Strong Release-Acquire (SRA) k −→ number of threads

- Super-linear: O(n · k)

↪→ RC20

↪→ Weak Release-Acquire (WRA)

↪→ RMW-free SRA

- Linear: O(n)

↪→ Relaxed

- Super-linear lower bound:

↪→ RMW-free RA, SRA, WRA

↪→ Improving O(n · k) bounds would be non-trivial

17



Summary of Established Bounds

- NP-hard: O(k · nk+1) n −→ number of events

↪→ Strong Release-Acquire (SRA) k −→ number of threads

- Super-linear: O(n · k)

↪→ RC20

↪→ Weak Release-Acquire (WRA)

↪→ RMW-free SRA

- Linear: O(n)

↪→ Relaxed

- Super-linear lower bound:

↪→ RMW-free RA, SRA, WRA

↪→ Improving O(n · k) bounds would be non-trivial

17



Summary of Established Bounds

- NP-hard: O(k · nk+1) n −→ number of events

↪→ Strong Release-Acquire (SRA) k −→ number of threads

- Super-linear: O(n · k)

↪→ RC20

↪→ Weak Release-Acquire (WRA)

↪→ RMW-free SRA

- Linear: O(n)

↪→ Relaxed

- Super-linear lower bound:

↪→ RMW-free RA, SRA, WRA

↪→ Improving O(n · k) bounds would be non-trivial

17



Summary of Established Bounds

- NP-hard: O(k · nk+1) n −→ number of events

↪→ Strong Release-Acquire (SRA) k −→ number of threads

- Super-linear: O(n · k)

↪→ RC20

↪→ Weak Release-Acquire (WRA)

↪→ RMW-free SRA

- Linear: O(n)

↪→ Relaxed

- Super-linear lower bound:

↪→ RMW-free RA, SRA, WRA

↪→ Improving O(n · k) bounds would be non-trivial

17



Conclusion

- Addressed the reads-from consistency checking problem in variants of C11

- Collection of optimal or nearly-optimal algorithms for different variants

- Established fine-grained complexity results

- Experimental evaluation confirms the impact of the new algorithms

Thank you!

18



Conclusion

- Addressed the reads-from consistency checking problem in variants of C11

- Collection of optimal or nearly-optimal algorithms for different variants

- Established fine-grained complexity results

- Experimental evaluation confirms the impact of the new algorithms

Thank you!

18



Conclusion

- Addressed the reads-from consistency checking problem in variants of C11

- Collection of optimal or nearly-optimal algorithms for different variants

- Established fine-grained complexity results

- Experimental evaluation confirms the impact of the new algorithms

Thank you!

18



Conclusion

- Addressed the reads-from consistency checking problem in variants of C11

- Collection of optimal or nearly-optimal algorithms for different variants

- Established fine-grained complexity results

- Experimental evaluation confirms the impact of the new algorithms

Thank you!

18



Conclusion

- Addressed the reads-from consistency checking problem in variants of C11

- Collection of optimal or nearly-optimal algorithms for different variants

- Established fine-grained complexity results

- Experimental evaluation confirms the impact of the new algorithms

Thank you!

18


