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Abstract
In recent years, there is an increasing interest in building e-health systems. The systems built to deliver the health services
with the use of internet and communication technologies aim to reduce the costs arising from outpatient visits of patients.
Some of the related recent studies propose machine learning–based telediagnosis and telemonitoring systems for Parkinson’s
disease (PD). Motivated from the studies showing the potential of speech disorders in PD telemonitoring systems, in this
study, we aim to estimate the severity of PD from voice recordings of the patients using motor Unified Parkinson’s Disease
Rating Scale (UPDRS) as the evaluation metric. For this purpose, we apply various speech processing algorithms to the
voice signals of the patients and then use these features as input to a two-stage estimation model. The first step is to apply a
wrapper-based feature selection algorithm, called Boruta, and select the most informative speech features. The second step
is to feed the selected set of features to a decision tree–based boosting algorithm, extreme gradient boosting, which has
been recently applied successfully in many machine learning tasks due to its generalization ability and speed. The feature
selection analysis showed that the vibration pattern of the vocal fold is an important indicator of PD severity. Besides, we
also investigate the effectiveness of using age and years passed since diagnosis as covariates together with speech features.
The lowest mean absolute error with 3.87 was obtained by combining these covariates and speech features with prediction
level fusion.
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1 Introduction

Parkinson’s disease (PD) is a neurological disorder char-
acterized by various motor (e.g., tremor, speech impair-
ment, postural instability) and non-motor (e.g., constipation,
cognitive impairment, depression, sleep disorders) symp-
toms [31]. It is estimated that as of 2016, more than 6
million people worldwide are living with PD [85]. Aging is
considered to be the biggest risk factor for the development
and progression of PD [28]; therefore, the number of people
with PD condition is expected to rise with the aging popula-
tion [13, 84]. There is still no definitive test for the diagnosis
and evaluating the severity of PD [38]. Diagnosis and symp-
tom monitoring typically require patients to visit a medical
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clinic. It was estimated that the economic burden caused by
PD was over $14.4 billion in 2010 in the USA alone [32].

Recently, there are some research efforts that aim
to diagnose and monitor PD using machine learning
techniques [1, 2, 5, 47, 65, 83]. The main goal of these
studies is to develop a telemedicine system that improves
the access of PD patients to medical services. These studies
are mostly based on the assessment of the severity of various
PD symptoms in an invasive way. The literature studies
show that speech disorders are one of the most suitable
PD symptoms that can be used in such PD telediagnosis
and telemonitoring studies [3, 63, 78]. This has two main
reasons. Firstly, speech disorders are seen in approximately
90% of the PD patients [77]. And secondly, speech disorders
are one of the earliest signs of PD [25].

The estimation of the UPDRS scores from speech tests
was first conducted by Tsanas et al. [77] and followed by
many efforts that are summarized in Section 2. Motivated
from the studies showing the potential of speech disorders
in PD telediagnosis and telemonitoring systems, in this
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study, we aim to estimate the Unified Parkinson’s Disease
Rating Scale (UPDRS) subscores of PD patients from their
voice recordings. UPDRS [16] is a well-accepted standard
for evaluating the severity of PD and the most commonly
used scale in clinical trials [59, 71, 87]. Specifically, in
this paper, we focus on improving the generalization ability
of the existing dysphonia-based UPDRS estimation models
by using extreme gradient boosting (XGBoost) algorithm,
whose success has been shown in many recent studies [10],
in a fully unbiased way by preventing the issues that may
lead to over-optimistic results. Another contribution of our
study is to use the tunable-Q wavelet transform (TQWT)
technique to extract features from the speech signals of
the subjects. The success of TQWT coefficients in speech-
based PD classification systems has recently been shown
[65]. Based on this finding, in this study, we use TQWT
coefficients in the UPDRS estimation model along with the
other most effective signal processing techniques.

Studies reported that PD symptoms tend to progress
linearly [9] and aging is the most important factor in
symptom progression [28]. Due to this, in this study, we
investigate the contribution of the predictive information
obtained from a set of covariates, which are age, years since
PD diagnosis, and gender of the subject, to the speech-
based predictive model. For this purpose, we combined the
covariates with speech features by data level and prediction
level fusion methods and show to what extent the covariates
help to decrease the UPDRS estimation error of the speech-
based system.

The proposed system consists of two main steps. First,
we have applied time, frequency, time-frequency, and time-
scale based linear/non-linear signal processing algorithms
to the vowel /a/ samples obtained from the PD patients with
the aim of extracting the characteristics of the malfunctions
(called as features) in the voice produced by Parkinson’s
patients. Later, these extracted features were given to
machine learning methods to map the results of signal
processing algorithms to motor-UPDRS and total-UPDRS
scores. The curse-of-dimensionality problem, which arises
when the number of features exceeds the number of samples
in a machine learning problem, is addressed with a wrapper-
based feature selection algorithm, Boruta [34].

The datasets used in this domain typically contain
multiple recordings per subject [63, 77, 78] and an
important issue that should be taken into account while
building machine learning models on such datasets is the
use of a suitable cross-validation (CV) strategy. Otherwise,
CV techniques such as the simple 10-fold CV may lead
to optimistic results since the training and test sets may
contain different recordings of the same subject. Many
studies have addressed this issue and suggested the use
of subject-wise CV methods in the presence of this type
of data [5, 47, 62–64, 83]. Based on these findings, we

apply a subject-wise cross-validation strategy throughout
our experiments. Feature subset selection bias, which occurs
when all the samples are used in the selection of a subset
of features [17, 45, 73], should also be avoided to construct
realistic diagnosis and monitoring systems. We also avoid
feature selection bias by applying the feature selection
algorithm on the training set only and finally use the
selected features on the left-out test set.

We applied the proposed UPDRS prediction system on a
dataset collected in the context of our project. The dataset
consists of 305 recordings belonging to 86 PD patients.
We have used this dataset before for PD classification
in [65] and made classification dataset publicly available
in UCI Machine Learning Repository [4]. Besides, we
applied the proposed system to another public dataset and
presented the UPDRS prediction results in comparison with
another related work that used an unbiased cross-validation
procedure.

The remaining of this paper is organized as follows.
Section 2 gives the previous UPDRS estimation studies
that use speech signals with machine learning models.
Section 3 presents the materials and methods including the
description of the dataset, feature extraction and selection
techniques, cross-validation strategy, and statistical tests
used throughout this study. Section 4 includes the results
of the experiments. Finally, we give conclusions and
discussions in Section 5.

2 Related works

There is increased attention in investigating the potential
of telemonitoring technologies for improving the quality of
the severity assessment and symptom monitoring of PD [15,
74]. It has been well-studied in the literature that people
with Parkinson’s disease commonly suffer from speech
disorders [26, 27, 29, 37, 61, 89]. Also, speech disorders
may be seen as one of the earliest signs of PD [14, 25]. There
is supporting evidence that speech degradation symptoms,
such as hypophonia (reduction in voice amplitude) and
dysphonia (increased breathiness and hoarseness in the
voice), occur with the progress in PD [29, 50]. Therefore,
speech tests, which may consist of running speech and/or
sustained vowel phonations, are employed to assess the
degree of speech degradation. Commonly, sustained vowels,
in which the subject is requested to hold the frequency and
amplitude of phonation constant as long as possible, are
used in PD clinical in order to avoid some confounding
effects of articulatory movement in running speech [66].

There are three main parts in the UPDRS: Section I
is referred as “Mentation, Behavior and Mood,” Section
II is referred to as “Activities of Daily Living,” and
Section III is referred to as “Motor Examination.” We
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refer to Section III of the UPDRS as motor-UPDRS, and
combination of all sections as total-UPDRS. In literature,
there are some studies attempted to find a mapping between
dysphonia measures and UPRDS. In one of these studies,
Midi et al. [44] examined the relation between various
voice parameters with motor-UPDRS on a test group of
20 early-stage PD patients, none of which was suffering
from speech problems. The authors reported only several
significant correlations, and they discuss that the choice of
subject group might have an influence on the results. In a
later study, Majdinasab et al. [39] investigated the relation
between motor-UPDRS and Voice Handicap Index (VHI).
VHI is a self-assessed test which measures the effect of
voice disorders on daily life [30]. Majdinasab et al. [39]
selected patients who were suffering from PD for at least
five years and proclaimed a voice disorder related to PD.
They reported a positive correlation between VHI and
motor-UPDRS (r = 0.485, p value < .05).

The study by Goetz et al. [23] analyzed the practicality of
computer-based at-home testing device in monitoring early-
stage PD patients. They recruited fifty-two PD patients
and monitored them for a 6-month period. Fifty patients
completed the trial and forty-eight of the patients remained
unmedicated during the study. Patients performed a number
of motor tasks, including speech tests, on a weekly basis.
UPDRS assessments were conducted at the beginning, after
3 months, and at the end of the trial. The estimation
of the UPDRS from speech tests was first conducted by
Tsanas et al. [77] on this dataset. They performed piecewise
linear interpolation in order to generate the weekly UPDRS
estimates. Their basis for applying linear interpolation
was that PD tends to progress linearly [9], especially in
unmedicated patients [67]. They estimated the UPDRS
scores with a mean absolute error (MAE) of 5.95±0.19
for motor-UPDRS and 7.52±0.25 for total-UPDRS using
simple 10-fold cross-validation (CV) and showed the
potential of the use of machine learning algorithms based on
dysphonia measurements in the monitoring of PD. A later
study [78], by using the same CV method and data used
in [77], reported MAE of approximately 2 UPDRS points
(p value < .001) for both motor-UPDRS and total-UPDRS.

Naranjo et al. [47] used the dataset made available
by Tsanas et al. [77]. They proposed a Bayesian linear
regression method for handling the replicated measurements
and also the time factor. As mentioned above, the UDPRS
values between two real UPDRS measurements in this
dataset were filled with linear interpolation and the authors
used only the real UPDRS measurements in their study.
They obtained MAE of 7.52±1.10 for motor-UPDRS and
9.64±1.64 for total-UPDRS and claimed that their results
are the first reliable ones published on this dataset.

Bayestehtashk et al. [5] formed another dataset for
predicting the UPDRS from speech which consists of

168 PD patients. They conducted three different speech
tasks: sustained phonation task, diadochokinetic task, and a
reading task. They used a subject-wise CV and obtained a
MAE of 5.5 for predicting the motor-UPDRS by combining
the features extracted from all three tasks.

Zhan et al. [90] generated a mobile Parkinson’s disease
score (mPDS) for assessing the PD severity by using the
sensor data captured from smartphones. There are five
tasks that determine the mPDS measure: voice, finger
tapping, gait, balance, and reaction time. They measured
the correlation of mPDS with UPDRS on a test group
of 40 participants (23 with PD and 17 healthy subjects).
They reported strong correlations between mPDS and total-
UPDRS (r = 0.81, p value < .001) and motor-UPDRS
(r = 0.88, p value < .001). However, the authors point out
that the participants of their study were not representing the
general population in PD. Most of the subjects were college
graduates and familiar with smartphones.

Buza and Varga [8] used feedforward neural networks to
predict the UPDRS scores on the datasets in [63, 77] by
also taking into consideration the hubness effect. They only
considered a subclass of features, namely jitter and shimmer
features available in the datasets and used a subject-wise
cross-validation for the evaluation of the results. They
proposed a hubness-aware error-correction method and
demonstrated that the proposed approach improves the
prediction accuracy.

One of the recent studies in this context [48] focused on
predicting the depression element, which is a specific part
of UPDRS, from voice recordings of PD patients. The study
relied on patient self-assessments of existence or absence
of depression and achieved the highest accuracy of 0.77 by
using random forest algorithm.

3Material andmethods

3.1 Dataset description

The first dataset used in this study was collected in the con-
text of our project at the Department of Neurology in Cer-
rahpasa Medical Faculty, Istanbul University-Cerrahpasa,
and has been used for PD classification in our recent work
[4, 65]. The UPDRS score is available for 86 PD patients
(49 male and 37 female) out of 188 who participated in the
study, and their summary information is demonstrated in
Table 1. Seven patients participated in the study more than
once at different times, and a total of 93 sessions were held.
Subjects were requested to produce a constant phonation
of the vowel /a/ for at least 5 s. At each session, subjects
performed this procedure for three to five successful times
and in a total of 305 sound recordings were acquired. The
speech data was recorded in a silent room with a 44.1-kHz
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Table 1 Summary information of the test group

Variables Males (n = 49) Females (n = 37) All subjects (n = 86)

Age 64.69±9.60 64.43±9.88 64.58±9.66

Years since PD diagnosis 5.12±4.23 6.13±5.31 5.55±4.72

motor-UPDRS 12.99±4.72 11.38±5.21 12.29±5.21

total-UPDRS 20.90±9.04 20.09±11.22 20.54±10.05

Statistics are given in the form mean ± standard deviation

sampling rate and 16-bit resolution settings. All participants
were informed about the study and gave written consent. No
subject exclusion criteria were applied.

The total-UPDRS and motor-UPDRS scores range from
0 to 124 and 0 to 56, respectively, in the UPDRS scale
applied to the patients in the context of this study. Due
to different practices in the calculation of the UPDRS
score, the UPDRS scores in some other studies discussed
in the introduction section range from 0 to 108 for motor-
UPDRS and 0 to 176 for total-UPDRS. In both practices,
0 corresponds to a healthy state and the maximum value
corresponds to the highest severity of symptoms.

In addition to the dataset described above, we also
utilized the publicly available Parkinson’s telemonitoring
dataset [77] in order to be able to compare our approach
with the existing literature that reported results on this
dataset. This dataset consists of approximately 6000
recordings of the sustained vowel /a/ coming from 42 early-
stage PD patients. These patients were monitored for a
6-month period, and the voice recordings were obtained on
a weekly basis. UPDRS assessments were conducted at the
beginning, after 3 months, and at the end of the trial, and
piecewise linear interpolation was performed in order to
generate the weekly UPDRS estimates. The total-UPDRS
and motor-UPDRS scores in this dataset range from 0 to
176 and 0 to 108, respectively. The raw voice recordings are
not publicly available; however, the data analyzed in [77]
with the extracted features is publicly available at the
UCI repository [4]. Parkinson’s telemonitoring dataset is
a widely used dataset in the context of PD telemonitoring
studies based on speech recordings. Further details about the
dataset can be found in [77].

3.2 Feature extraction

In the production of healthy vowel voices, successive
opening and closure movements of the vocal fold produce
nearly periodic signals called phonemes. During this
process, the time durations between various vocal fold
positions, in which they are apart or in collision, remain
almost the same for successive cycles. The reciprocal of this
duration is generally named as the fundamental frequency

(Fo) of the phoneme. In PD patients, the usual vibration
pattern of the vocal folds is severely affected due to the
decrease occurred in the amount of dopamine, which is an
essential neurotransmitter used in neuron communication.
Besides, a high-energy turbulent noise component also
occurs due to the incomplete closure of vocal fold resulting
in dramatic changes in the power distribution of speech
signal [21, 65].

In this study, linear and non-linear signal processing
algorithms, based on time, frequency, and time-frequency
and time-scale representations, were applied to recorded /a/
vowels in order to quantitatively unveil the impairments
seen in PD patient’s speech behaviors. The measures
obtained with these algorithms are called dysphonia
measures. As the first part of the extracted features,
traditional signal processing algorithms were applied to
collected speech samples with the aim of obtaining
linear behavior time, frequency, and time-frequency based
signal features which include jitter, shimmer, fundamental
frequency (F0), harmonics-to-noise ratio (HNR), noise-
to-harmonics ratio (NHR), intensity, formant frequencies,
bandwidths [42, 86], root mean square (RMS) energy,
strength of excitation (SoE) [46], and cepstral peak
prominence (CPP) measures. The details of these features
given in Table 2 are as follows. As the representative of F0

measures, the standard deviation, median, minimum, mean,
and maximum values of F0 were employed. Similarly,
minimum, maximum, and mean intensity values were used
as features. As the measure of tongue movement, the
first four formants were employed as features. The first
four bandwidths of the formants were used as bandwidth
features which are mostly related to volumes of vocal
tract cavities. The CPP feature represents the degree of
regularity or periodicity in the voice signal. Higher CCP
values correspond to greater periodicity.

After extracting the traditional baseline measures,
three additional signal processing approaches, named as
recurrence period density entropy (RPDE), detrended
fluctuation analysis (DFA), and pitch period entropy (PPE),
were applied to the collected speech samples [77]. The
DFA characterizes the turbulent noise component that is
caused by air-flow in the vocal tract. RPDE quantifies the
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deviations from the periodicity of vocal fold oscillations.
In PD speech samples, it is challenging to sustain stable
F0 values due to the incomplete vocal fold closure.
In this respect, PPE quantifies the impaired control of
the fundamental frequency by using a logarithmic scale.
Additional to these vocal fold movement–related features,
as an alternative, empirical mode decomposition (EMD)
based features were also calculated. By using EMD, the
speech samples were decomposed into a small number of
intrinsic mode functions (IMF) which form a complete and
nearly orthogonal basis for the PD speech samples. The
first few IMFs of the signal of interest represent the high-
frequency components and these high-frequency bearing
IMFs were given to Teager-Kaiser energy, squared energy,
and Shannon entropy operators to characterize the noise.
The details of these features can be found in Table 3.

The wavelet transform (WT) is a powerful tool for
processing non-stationary signals due to its adaptive time-
scale representation property which provides a good
frequency resolution at low frequencies and a good time
resolution at high-frequency signal components. Due to
its flexible time-frequency representation ability, WT has
previously been applied to various biomedical signals [33,
52, 53, 69, 82] including the speech signals taken from PD
patients [41, 65].

The motivation behind the use of WT in speech-based PD
applications is that a healthy subject is expected to be able to
sustain a stable pitch for a vowel while significant deviations
would occur in the fundamental frequency of the speech
signals produced by the PD patients. In this respect, two
various approaches have been carried out in the literature.
In the first approach, the fundamental frequency (F0) of
the speech signals is obtained in the first sense and later

the discrete WT (DWT), which is a fast implementation of
ordinary WT based on filter-bank theory, is applied to F0

signal in order to quantify the deviations from the expected
behavior [80]. In our study, we applied 10 levels of DWT to
F0 and the resultant detail/approximation coefficients were
given to energy, Shannon’s entropy, the log energy entropy,
and the Teager–Kaiser energy operators resulting in feature
subsets related with the fundamental frequency of vowels.
This feature subset is referred to as the “WT features related
with F0” in Table 3. As the second WT-based approach, the
tunable Q-factor wavelet transform (TQWT) [68], in which
the Q-factor of the decomposition/reconstruction filters
can be tuned according to the time-frequency behavior of
processed signal, was applied to the recorded raw speech
signals with the aim of extracting adjusted time-scale
features. Q-factor of a decomposition/reconstruction filter
can be defined as the ratio of the center frequency of
that filter to its bandwidth. By definition, when a better
frequency resolution is needed (for example, in order to
analyze the sustained oscillations seen in vowels), relatively
high Q-factor filters can be chosen. On the other hand,
relatively low Q-factor filters can be preferred for analyzing
transient signals such as the deviations that can be occurred
in the expected successive opening and closure movements
of the vocal fold. Hence, in the proposed study, the
TQWT is employed to form the optimum time-frequency
representation that unveils the effects of PD in collected
speech samples. In the TQWT, three parameters named
as J (the number of decomposition and reconstruction
levels), Q (Q-factor of band-pass filters), and r (redundancy
or oversampling rate) are used to tune the applied WT
according to the signal of interest. In the proposed study,
after the intuitive testing phase, the optimum parameter

Table 3 Other features extracted from speech samples

Measure Toolbox Explanation

Recurrence period density entropy (RPDE) VAT Measures the level of uncertainty in the quantification of fundamental frequency.

Detrended fluctuation analysis (DFA) VAT Quantifies the degree of stochastic self-similarity in the turbulent noise.

Pitch period entropy (PPE) VAT Quantifies the degree of disruption in fundamental frequency using a
logarithmic scale.

Mel frequency cepstral coefficients (MFCCs) VAT Quantifies the degree of impairments caused by PD in vocal tract separately
from the vocal folds.

Wavelet transform (WT) features related with F0 VAT Employed to reveal the changes in F0 with PD progression.

Glottis quotient (GQ) VAT Measures the opening and closing time-intervals of the glottis.

Glottal to noise excitation (GNE) VAT Measures the extent of turbulent noise that is caused by incomplete vocal
fold closure.

Vocal fold excitation ratio (VFER) VAT Aims to explain the nonlinear physiological phenomena in speech production.

Empirical mode decomposition (EMD) VAT Decomposes a speech signal into elementary signal components called as
intrinsic mode functions (IMFs).

TQWT-based features TQWTT Has the ability to represent PD speech samples in an adjustable scale.

TQWTT tunable Q-factor wavelet transform toolbox

Med Biol Eng Comput (2020) 58:2757–27732762



set giving the best representation was found as J=35,
Q=2, and r=4. A relatively high Q-value was chosen to
process speech signals which mostly consist of sustained
oscillations. After extracting the detail and approximation
coefficients, the energy/entropy values of each decomposed
level were obtained, and these energy/entropy values were
used in UPDRS prediction. The details of the applied
TQWT procedure can be found in [65] for PD speech
samples with more detail.

In literature, mostly, linear signal processing methods
have been employed to extract useful information from
the PD speech samples [61]. Although these linear speech
analysis methods have performed well in modelling the
deviations that occurred in the behavior of PD samples, new
nonlinear speech processing methods have been started to
be used more often in representing the characteristics of
PD speech samples due to their higher modelling capability
[78]. In this respect, three non-linear speech processing
methods named as the glottal to noise excitation (GNE),
vocal fold excitation ratio (VFER), and glottis quotient
(GQ) were utilized in more recent studies for extracting
additional information from PD speech samples. The GNE
parameter gives information about whether the analyzed
speech signal originates from vibrations of the vocal folds
or from the acoustic noise generated in the vocal tract [43].
The VFER metric works on the vocal fold cycles in order
to measure the energy ratios during each cycle. The main
aim is to measure the nonlinear physiological phenomena
in speech production which occur as a result of incomplete
vocal fold closure. Lastly, the GQ parameter quantifies the
opening and closing duration of the glottis.

Mel-frequency cepstral coefficients (MFCCs), which
imitate the efficient filtering abilities of the human ear,
are widely used as a robust feature extractor in the field
of speech processing [20, 40, 81]. During the MFCC-
based feature extraction, cepstral analysis is combined
with spectral domain partitioning by employing overlapped
filter banks that have triangular shape frequency responses
resulting in a dense representation of the spectrum. For
PD studies, the advantage of using MFCC comes from
their ability to detect subtle changes in the motion of the
articulators (tongue, lips) which are known to be severely
affected in PD patients [79]. In the proposed study, the
MFCC method was applied to recorded signals with the
aim of extracting MFCC matrices containing segmental
information (MFCC coefficients). After obtaining the
MFCC coefficients, the mean, standard deviation, log-
energy, and the first/second derivatives of them were
calculated and later given as features into learning models.
In the feature extraction part, all extracted features were
obtained by using Praat [7], voice analysis toolbox [76,

78, 80], voice sauce [70], and tunable Q-factor wavelet
transform (TQWT) [68] software packages.

3.3 Feature selection

We extracted 872 features (p) from 305 samples (N)
belonging to 86 PD patients. In this case, p could be
considered as much larger than N, often denoted as p � N .
The major issues that should be dealt with this type of
settings in machine learning problems are the high variance
of the fitted model and overfitting [17]. Therefore, we
applied feature selection as a pre-processing step in order to
reduce the dimensionality of the dataset.

Feature selection is a common practice for aiming
to enhance the predictive performance, obtaining faster
models and having a better understanding of high-
dimensional datasets [24]. We applied Boruta feature
selection algorithm [35] due to its successful applications
in various domains [51, 55, 56, 88]. Boruta is a heuristic
algorithm which aims to find all relevant variables. It
utilizes a random forest algorithm in the process of
searching for all relevant features. For each feature in the
dataset, the Boruta algorithm creates a matching feature
by shuffling the values of the original feature. Random
forest algorithm computes a variable importance score for
every feature and then a z-score is calculated by dividing
the variable importance score with its standard deviation.
Boruta algorithm determines the significance of a feature
by comparing its z-score with the maximum z-score among
the randomized features. For more details about the Boruta
feature selection algorithm, we refer the reader to [35].

3.4 Statistical analysis

We used the XGBoost [10] implementation of the gradient
boosting decision tree (GBDT) [18, 19] for building
the predictive models. GBDT is a machine learning
algorithm successfully used in various domains, including
energy, transportation, and medical [11, 75, 91]. GBDT
is essentially a tree ensemble method where a large
number of decision trees are combined together to build
a robust model. A decision tree is a predictive model
where a mapping from the observations to the target value
is achieved by arranging a set of rules in a tree-like
structure with respect to some given loss function. The rules
correspond to the threshold values for which the feature
variables are split into two disjoint sets. The decision tree
grows by continuously partitioning the existing leaf nodes
until some stopping criteria are satisfied. The combination
process of the decision trees is conducted by a procedure
known as gradient boosting where each new decision tree

Med Biol Eng Comput (2020) 58:2757–2773 2763



is constructed by fitting the residuals of the previous trees.
We performed a random search [6] at each iteration on the
training set for the hyper-parameter tuning of GBDTs.

Studies reported that PD symptoms tend to progress
linearly [9] and aging is the most important factor in
symptom progression [28]. Therefore, we used age, years
since PD diagnosis, and also gender as the covariates.
We combined the covariates with speech features by data
level and prediction level fusion methods. For data-level
fusion, we merged the covariates with the speech features
and trained our model on the obtained single dataset. For
prediction level fusion, we fitted a linear regression model
on the covariates and then combined the predictions of the
covariates and speech features by averaging. Rahn et al. [58]
observed some differences in vocal pathologies of male and
female PD patients. Based on this finding, we also included
gender information along with the speech features.

3.5 Cross-validation

Cross-validation (CV) is a standard method for estimating
the prediction error of a model by splitting the data into
training and test sets [17]. In our dataset, each subject has
more than one recording. If we randomly split the data into
training and test sets, the recordings coming from the same
subject may occur both in the training and test sets. Thus, we
used the leave-one-subject-out (LOSO) CV which prevents
the records coming from the same subject from appearing
in both training and test sets.

LOSO CV also resembles the use-case scenario of the
model [62]. The cross-validation methodology applied in
our experiments is as follows: (1) We leave the samples of
one subject for testing; (2) the remaining records are divided
into two parts, 75% for training and 25% for validation; (3)
the model is trained on the training set with feature selection
followed by different hyper-parameter values of the training
algorithm; (4) optimum values of hyper-parameters and
selected features are determined on the validation set; (5)
the optimum model is applied on the test set. This procedure
is repeated for each left-out-subject, and the average results
are presented. We should note that all subjects have multiple
recordings per session in our dataset, so for obtaining the
final prediction, we took the average of predictions of all
samples of a subject in a session. The performances of the
models were evaluated by the mean absolute error (MAE)
and Spearman correlation:

MAE = 1

n

n∑

j=1

|yj − ŷj | (1)

where j denotes the index of the subject, yj is the predicted
UPDRS, ŷj is the actual UPDRS, and n is the number of
subjects.

4 Experimental results

4.1 Data exploration

It is seen from Table 4 that there are seven features
belonging to the MFCC subset in the first eleven features
which have high correlation with UPDRS values. MFCCs,
which are mostly based on the human hearing perception,
parse the frequency range linearly for the frequencies
below 1000 Hz while the remaining higher frequency range
is spaced logarithmically. In MFCC, the normal cepstral
coefficients do not capture the signal energy in these
various frequency ranges and they also assume that the
analyzed signal is stationary, which means they do not
have information related to the dynamics between time
frames. Hence, the logarithmic energy values of cepstral
coefficients are obtained to compensate for the former
drawback, while the first/second derivative operators are
applied to overcome the latter. At the end of this process,
the cepstral coefficients, their logarithmic values, and the
first/second derivatives form a matrix which consists of the
mel-spectrum information of various time frames. Later, the
mean and standard deviation of these time-related values are
calculated to be employed as features in further processing
steps.

According to the source-filter theory [12], the voiced
speech (such as the /a/ vowel used in this study) is
sourced by the vibration of the vocal fold which actually
gives a response to the airflow coming from the lungs.
Subsequently, the output of this periodic vibrations is
processed by the vocal tract by changing its spectral shape
and resulting in the voiced speech. The interaction between

Table 4 Correlation coefficients of extracted features with motor-
UPDRS

Features Correlation with

motor-UPDRS

V FERmean −0.2846

delta log energystd −0.2585

6th delta MFCC coeff icientstd −0.2576

V FERSNR SEO −0.2428

HNR0−2500Hz −0.2456

V FERentropy −0.2377

0th delta MFCC coeff icientstd −0.2344

3rd MFCC coeff icientmean 0.2334

1st MFCC coeff icientmean −0.2295

3rd MFCC coeff icient deltastd −0.2291

0th delta delta MFCC coeff icientstd −0.2273

VFER vocal fold excitation ratio, HNR harmonics to noise ratio,
MFCC mel-frequency cepstral coefficient features have the highest
correlation with motor-UPDRS in our dataset
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the vocal fold and vocal tract can be modelled as the product
of their transfer functions in the frequency domain resulting
in the frequency domain representation of produced speech.
In this respect, it can be thought that the individual effects of
vocal fold and vocal tract (in the frequency domain) can be
achieved by applying a logarithm operator, which converts
multiplication to addition, to the MFCCs.

In Table 4, the standard deviation of delta log energy
shows the highest negative correlation with UPDRS values
in terms of MFCCs. This feature gives the logarithmic
energy for the first derivative of MFCCs which actually
describes the logarithmic energy changes in speech fluency.
As expected, we observe a high negative correlation
between the delta-log-energystd and UPRDS; because the
speed and amplitude of utterance decrease when the
condition of the disease goes worse and the speech
pattern becomes more monotone in high UPDRS patients.
Moreover, when the other MFCC-based features are
investigated, it was observed that they have also high
negative correlation with UPDRS, except the mean value
of the third coefficient. Regarding the standard deviation of
the first derivatives for zeroth, third, and sixth MFCCs, we
observed high negative correlations as well with UPDRS.
This shows that a significant reduction in the temporal
variability between the consecutive speech frames occurs
when the UPDRS goes higher in patients. A similar
pattern was also seen in the standard deviation of the
second derivative of zeroth MFCC, and all these temporal
variability reductions can be accepted as the result of
slow and monotone speech pattern seen in high UPDRS
PD patients. With respect to the mean values of the first
and third MFCCs, we observed a contrasting pattern: the
first MFCC experiences a negative correlation, while the
third MFCC has opposite behavior. This behavior can be
explained by using the source-filter theory, in which the
vibrations are sourced by the movement of the vocal fold.
The air flow occurring as a result of these vibrations is
filtered by the vocal tract, and the voices are formed. The
main frequency of this source wave has different values
in males (around 100 Hz), females (around 200 Hz), and
children (200–300 Hz) [54, 72]. When the frequency range
that is covered by the third MFCC is investigated, it is
seen that the frequency values of this source wave overlap
with the third coefficient’s range and this shows that the
deterioration in the vocal fold caused by PD results in a
positive correlation with UPDRS.

In addition to the MFCC features, three VFER family–
related features also have great correlation with UPDRS
values in PD patients as depicted in Table 4. The VFER is
a kind of dysphonia measure which has similar conceptual
justification to GNE: glottal cycles (opening and closing
cycle of the vocal fold) cause a synchronous excitation
of different frequency bands in speech while the turbulent

noise leads to uncorrelated excitation [76]. The main idea of
VFER feature family is measuring the nonlinear interactions
in speech production which may happen as a result of PD.
In PD patients, the healthy vibration pattern usually suffers
from the incomplete vocal fold closure which leads to the
creation of unwanted turbulent noise. In the calculation
process of VFER, firstly the opening/closure timestamps of
the vocal fold are identified to extract each glottal cycle.
Secondly, the frequency spectrum of each speech cycle is
divided into segments having 500-Hz shifts. Thirdly, the
Hilbert envelope of these segments, which correspond to
various frequency bands, are calculated. Fourthly, the cross-
correlations of these pair-wise envelops are found and the
maximum value among the correlations between pairs of the
frequency bands are chosen. Later, the maximum value of
step four is chosen as the GNE for the relevant glottal cycle.
Finally, the mean, standard deviation, and entropy values
of all cycle-related GNE values are named as one of the
members of the VFER family. Additional to these features,
Teager-Kaiser energy operator (TKEO) and squared energy
operator (SEO) are applied to time-domain outputs of
filtered glottal cycles, which inherit only the information
of specific frequency band, for obtaining the signal to
noise and noise to signal ratios for each speech sample.
As seen in Table 4, the mean and entropy values of VFER
have high negative correlation with UPDRS. This relation
is parallel to the expected scenario because, in the high
UPDRS patients, the severity of the corruption in the vocal
fold vibration increases and this leads to high turbulent
noise. As a result, this high turbulent noise decreases the
cross-correlation values found with Hilbert envelops and
the chosen maximum values are getting smaller with the
increasing UPDRS values. A similar pattern is also seen in
the signal to noise ratio feature of VFER family when the
SEO operator is used; the turbulent noise level in the time
domain cycle signals rises in the high UPDRS patients and
this effect reduces the signal to noise ratio.

As a final point in Table 4, a similar effect of turbulent
noise is observed on the harmonics to noise ratio (HNR)
feature. Due to the impairments in vocal fold closure
pattern, the turbulent noise energy increases with respect to
main harmonics and this reduces the HNR ratio causing a
high negative correlation with UPDRS.

4.2 Motor-UPDRS estimation

As mentioned in the Introduction section of this paper, aging
is one of the most important factors in PD progress and
PD symptoms tend to progress linearly with elapsed time
since PD diagnosis. The correlations of age and years since
PD diagnosis variables with motor-UPDRS are shown in
Table 5. As seen in Tables 4 and 5, years since diagnosis
is the most correlated variable among all features used in
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Table 5 Correlation coefficients of age and years since PD diagnosis
with motor-UPDRS

Variables Correlation of the covariates

with motor-UPDRS

Years since PD diagnosis 0.3574

Age 0.2431

our study. Age is also the most correlated sixth variable.
Figure 1 shows the scaled values of these two covariates
grouped by patients’ motor-UPDRS scores. We also see
that the motor-UPDRS scores, i.e., the severity of the PD
symptoms, increase with age and years since diagnosis.
Therefore, we include the related factors as additional
covariates into our estimation model and aim to investigate
the contribution of these covariates into the dysphonia-
based estimation model.

The first step of the proposed system is to apply feature
extraction techniques detailed in Section 3.2 to the raw
speech recordings of the patients. Since the number of
features, 802, is higher than the total number of samples,
305, we first apply the Boruta feature selection algorithm
and then feed the selected features to XGBoost for UPDRS
estimation. Figure 2 shows the number of selected features
from each speech signal processing tool used in this study.
It also shows the proportion of selected features to the
total number of features for each speech processing tool.
It is seen that almost half of the features extracted with
voice sauce toolbox (VAT) have been selected by Boruta.
As seen in Tables 2 and 3, this toolbox mostly gives
features that emphasize the relation between turbulent noise
energy and the energy of the main source voice plus its
harmonics. This situation indicates that the vibration pattern
of the vocal fold, which acts as the direct source of speech
harmonics and also is the reason for the turbulent noise
happening due to the impairments in its own closure pattern,
is highly affected in PD patients. We also see in Fig. 3 that

almost 15% of the tunable-Q wavelet transform (TQWT)
coefficients are selected by Boruta showing that TQWT
features are effective in catching the changes in speech due
to PD progression.

Table 6 shows the mean absolute error (MAE) and
Spearman correlation of the proposed approach. We see that
the best results with MAE of 3.87 and Spearman correlation
of 0.46 are obtained by combining speech features and
covariates using prediction level fusion. We should note that
the covariates when used alone are fed to linear regression,
while they are fed to XGBoost when fused with speech
features with data-level fusion. This is due to the fact
that there are only three variables in the covariates feature
set and the relations among these features and also their
relations with motor-UPDRS are not too complex to be
processed by a non-linear machine learning algorithm. As
a pre-processing step, we applied min-max scaling before
linear regression. However, we did not apply any scaling
for XGBoost since it is based on space-partitioning tree
and hence is not sensitive to scale [92]. Regarding the
individual performance of feature sets, it can be seen that the
covariates with linear regression perform better than speech
features with XGBoost showing that the covariates possess
important information about the level of the motor-related
symptoms.

One of the advantages of conducting LOSO cross-
validation is that LOSO schema utilizes the maximum
amount of data in the training process. We further examined
the influence of training set size on the performance of the
XGBoost algorithm. In particular, we compared the results
obtained by applying LOSO cross-validation with two other
cross-validation schema where the data is split into training
and testing sets with ratios %75 − %25 and %50 − %25.
This comparison was performed in the following way: we
first randomly selected %75 of the subjects for training
and the remaining %25 was used for testing. Then, the
%50 − %25 split was obtained by selecting the ∼ %66 of
the previously selected training set, and using the same test

Fig. 1 Scaled values of age and
years since PD diagnosis
grouped by patients’
motor-UPDRS scores
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Fig. 2 Number of features of
speech signal processing tools

set that was obtained in the previous step. This procedure
ensures that the test set is always the same for both ratios.
This process has been repeated 100 times with the setting
where motor-UPDRS is predicted with XGBoost using
speech data and covariates, and the averages of the obtained
results are displayed in Table 7. The results indicate that the
performance of the algorithm improves as more data is used
in the training process.

4.3 Results on Parkinson’s telemonitoring dataset

We applied the approach proposed in this study on the
publicly available Parkinson’s telemonitoring dataset [77]
to compare its performance to the best result achieved on
this dataset in the literature which used an unbiased cross-

validation method. To the best of our knowledge, the study
by Naranjo et al. [47] has reported the best results on
Parkinson’s telemonitoring dataset by using an unbiased
cross-validation method. Naranjo et al. randomly split the
recordings of approximately %75 percent of the subjects
for training and the rest for testing and applied a Bayesian
linear regression for performing the UPDRS estimation.
They repeated this process 100 times and then reported
the average of the obtained results. We followed a similar
procedure with the difference that we performed a feature
selection step with Boruta and the UPDRS predictions were
performed with XGBoost algorithm. Table 8 shows the
obtained MAEs and standard deviation with our approach
on the Parkinson’s telemonitoring dataset along with the
results reported in [47]. We provide overall and also the

Fig. 3 Feature occurrence
frequencies of speech signal
processing tools
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Table 6 Results of the motor-UPDRS (0-56 scale) predictions obtained with the proposed approach

Feature set MAE Spearman

Covariates with linear regression 4.01 0.38

Speech with XGBoost 4.14 0.35

(*) Speech + covariates (XGBoost) 3.96 0.42

(**) Speech (XGBoost) + covariates (linear regression) 3.87 0.46

(*) Data-level fusion, (**) prediction level fusion

gender-specific results in Table 8. The results demonstrate
that the proposed approach resulted in a lower MAE in all
three cases.

5 Conclusions and discussion

In this study, we address the problem of disease severity
assessment and symptom monitoring in Parkinson’s disease
(PD) investigations. We analyze the sustained vowel
recordings of PD patients and propose a machine learning
framework to predict the motor-UPDRS section. We present
our findings on a recent dataset collected in the context of
our project [65] and another public dataset.

Considering that telemonitoring applications are
designed to be used for patient follow-up on a regular basis
and hence patients’ demographic information and case his-
tory are available, we have incorporated demographic and
patient information such as age, gender, and years since
diagnosis into the dysphonia-based estimation model. The
results showed that using these covariates together with
speech features improves the accuracy of the telemonitoring
system. The additional covariates are used as a kind of cor-
rection factor by the estimation model since they are highly
correlated with the progress of the symptoms. The pre-
diction level fusion, in which two independent models are
trained and then their predictions are combined, gave lower
error than data-level fusion, in which covariates and speech
features are first merged and then a single model is trained
on the obtained feature set. The feature set analysis with the
wrapper-based feature selection algorithm, called Boruta,

Table 7 Comparison of leave-one-subject-out with %75 − %25 and
%50 − %25 splits

Feature set MAE Spearman

Leave-one-subject-out 3.96 0.42

%75 − %25 4.24 0.38

%50 − %25 4.28 0.36

showed that the features related to the vibration pattern of
the vocal fold are effective features in UPDRS estimation.

In the context of PD telemonitoring studies based on
speech tests, the main issue this and many other studies
have identified is the use of a non-subject-wise CV scheme.
In many cases, subjects undergo a repeated measurement
of the same test at the same time. If a subject-wise CV
scheme is not used in the presence of this type of data,
some of the measurements of a subject may remain in the
training set while the rest occur in the test set. This could
potentially introduce a dependence between training and
test sets. It has been pointed out by many studies that the use
of improper CV methods could produce overly misleading
results [5, 47, 62–64, 83]. Besides, feature subset selection
bias, which occurs when all the samples are used in the
selection of a subset of features, should also be avoided to
construct a realistic telemonitoring system. In this study,
we aimed to apply a totally unbiased machine learning
framework by using proper cross-validation methods during
both the feature selection and model training steps. The
best results obtained under the unbiased realistic setting in
our experiments, mean absolute error of 3.87 and Spearman
correlation of 0.46, showed the potential of the use of such
telemonitoring applications for PD severity assessment.

There are some studies which reported that the sustained
vowel test may not be an appropriate assessment tool
for PD. In one of these studies, Bayestehtashk et al. [5]
reported that the diadochokinetic task and particularly the
reading task were better able to predict the motor-UPDRS

Table 8 Comparison of the motor-UPDRS (0–108 scale) prediction
results on the Parkinson’s telemonitoring dataset [77]

Study Features MAE

This study

Speech 7.13±1.07

Speech (males) 7.89±1.50

Speech (females) 6.91±1.62

Naranjo et al. [47]

Speech 7.52±1.10

Speech (males) 8.22±1.49

Speech (females) 8.79±2.89
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section than the sustained phonation task. Our motivation
for conducting the sustained vowel test was that it is a
simpler test which can be feasible in real-life applications.
Also, the analysis conducted by Bayestehtashk et al. [5] was
based only on the linear learning models. It was previously
discussed by Tsanas et al. [77, 78] that the linear learning
models may have limitations and they suggested the use
of nonlinear models for the prediction of UPDRS with
features extracted from sustained phonations. In another
related study, Lipsmeier et al. [36] conducted a study where
the participants (44 with PD and 35 healthy controls)
performed six tests (sustained phonation, rest tremor,
postural tremor, finger tapping, balance, and gait) with their
smartphones. They reported that except for the sustained
phonation test, the features extracted from the other tests are
significantly correlated with the corresponding assessments
in the UPDRS. The reason for not observing a significant
correlation between the sustained phonation test and the
speech assessments in the UPDRS might be because they
only extracted a single feature, namely a mel-frequency
cepstral coefficient, from the data captured by the sustained
phonation test. Also, even though UPDRS is considered to
have good inter-rater variability overall [71], some elements
in UPDRS, which includes speech assessments, display
high inter-rater variability [22, 49, 60].

The literature studies revealed that the motor-UPDRS
section of UPDRS has approximately four to five points [57]
inter-rater variability in average (on 0–108 scale). Based
on this observation, an error close to these values can
be seen as an effective decision support system [47, 78].
However, in this study, we collected data from a single
clinic, so as discussed by Bayestehtashk et al. [5], clinic-
specific practices might have an influence on our results.
For instance, Bayestehtashk et al. [5] used the data collected
from three clinics and they included a clinic-wise analysis
in their study. They used the data collected from one
clinic for training and evaluated their results on the data
obtained from the other two clinics. Besides, in our study,
UPDRS assessments at each session were conducted by
one of the neurologists in the project group. To circumvent
these limitations, in future work, the data can be collected
from multiple clinics and also multiple neurologist experts
can apply UPDRS to each patient. We believe that using
average UPDRS score from multiple neurologist experts
might decrease the teacher noise and thus increase the
reliability of the obtained model.
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