
Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
Contents lists available at ScienceDirect

Journal of Logical and Algebraic Methods in

Programming
www.elsevier.com/locate/jlamp

Explaining safety failures in NetKAT

Georgiana Caltais ∗, Hünkar Can Tunç

Department for Computer and Information Science, University of Konstanz, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 March 2020
Received in revised form 26 February 2021
Accepted 13 March 2021
Available online 12 April 2021

Keywords:
Software defined networks
NetKAT
Safety
Failure analysis
Axiomatisations
The Maude system

This work introduces a concept of explanations with respect to the violation of safe
behaviours within software defined networks (SDNs) expressible in NetKAT. The latter is
a network programming language based on a well-studied mathematical structure, namely,
Kleene Algebra with Tests (KAT). Amongst others, the mathematical foundation of NetKAT
gave rise to a sound and complete equational theory. In our setting, a safe behaviour is
characterised by a NetKAT policy, or program, which does not enable forwarding packets
from an ingress i to an undesirable egress e. We show how explanations for safety
violations can be derived in an equational fashion, according to a modification of the
existing NetKAT axiomatisation. We propose an approach based on the Maude system for
actually computing the undesired behaviours witnessing the forwarding of packets from
i to e as above. SDN-SafeCheck is a tool based on Maude equational theories satisfying
important properties such as Church-Rosser and termination. SDN-SafeCheck automatically
identifies all the undesired behaviours leading to e, covering forwarding paths up to a user
specified size.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Explaining systems failure has been a topic of interest for many years now. Techniques such as Fault tree analysis (FTA)
and Failure mode and effects analysis (FMEA) [1], for instance, have been proposed and widely used by reliability engineers
in order to understand how systems can fail, and for debugging purposes.

In this paper we focus on explaining violations of safe behaviours in software defined networks (SDNs). Software de-
fined networking is an emerging approach to network programming in a setting where the network control is decoupled
from the forwarding functions. This makes the network control directly programmable, and more flexible to change. SDN
proposes open standards such as the OpenFlow [2] API defining, for instance, low-level languages for handling switch con-
figurations. Typically, this kind of hardware-oriented APIs are not intuitive to use in the development of programs for SDN
platforms. Hence, a suite of network programming languages raising the level of abstraction of programs, and corresponding
verification tools has been recently proposed [3–5].

It is a known fact that formal foundations can play an important role in guiding the development of programming
languages and associated verification tools, in accordance with an intended semantics obeying essential (behavioural) laws.
Correspondingly, the current paper is targeting NetKAT [6,7] – a formal framework for specifying and reasoning about
networks, integrated within the Frenetic suite of network management tools [3]. In this work we exploit the sound and
complete axiomatisation of NetKAT in [6] and derive explanations of safety failures in a purely equational fashion.

* Corresponding author.
E-mail addresses: gcaltais@gmail.com (G. Caltais), hcantunc@gmail.com (H.C. Tunç).
https://doi.org/10.1016/j.jlamp.2021.100676
2352-2208/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jlamp.2021.100676
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jlamp
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jlamp.2021.100676&domain=pdf
mailto:gcaltais@gmail.com
mailto:hcantunc@gmail.com
https://doi.org/10.1016/j.jlamp.2021.100676

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
From a more practical perspective, we introduce SDN-SafeCheck, a tool based on the Maude system [8], aiming at au-
tomatically computing the explanations for undesired behaviours within a NetKAT program that forwards packets from an
ingress i to an egress e. SDN-SafeCheck is based on Maude confluent and terminating equational specifications, and computes
the explanations for all the undesired behaviours covering forwarding paths up to a user specified size.

Related to the current work, the authors of NetKAT [6] show that checking certain properties about networks, including
reachability properties, can be reduced to equivalence checking problems in NetKAT by utilizing its sound and complete
axiomatisation. NetKAT is also equipped with a practical tool which can check the equivalence of NetKAT policies [7]. The
main focus of the tool proposed in [7] is to check whether a property holds in the network. This differs from our focus
that we aim on discovering all possible ways a reachability property can be violated, and provide explanations that may be
instructive for debugging purposes.

The results in [9] introduce a framework for automated failure localisation in NetKAT. The approach in [9] relies on
the generation of test cases based on the network specification, further used to monitor the network traffic accordingly
and localise faults whenever tests are not satisfied. In contrast, our approach provides explanations for possible failures
irrespective of particular input packets.

The work in [10] was the first to utilize a rewrite engine to manipulate NetKAT expressions in order to verify network
properties. The authors of [10] propose an operational semantics for NetKAT and implement their formal specification in
Maude. By utilizing the proposed operational semantics, the authors mainly follow three different techniques for automated
reasoning in NetKAT: model checking of invariants, linear temporal logic based model checking, and normalization. The
proposed formulations of the model checking procedures do not provide an explicit counterexample in case of a failure,
hence these methods are unsuitable in our context. The normalization method is a different formulation of the equivalence
checking approach that was proposed in [6] for verifying network properties. The normalization method assesses whether
NetKAT policies can be converted into the same normal form. This is a relevant method in our setting as well, however, the
experimental evaluation in [10] shows that the proposed specification for the normalization approach fails to scale even for
networks of moderate size.

Our contributions. This paper is an extension of our previous work in [11]. In [11] we introduced a concept of safety in
NetKAT which, in short, refers to the impossibility of packets to travel from a given ingress to a specified hazardous egress,
in the context of the so-called “port-based hop-by-hop” switch policies allowing only tests and port modifications. Then, we
proposed a notion of safety failure explanation which, intuitively, represents the set of finite paths within the network, leading
to the hazardous egress. Eventually, we provided a modified version of the original axiomatisation of NetKAT exploited in
order to automatically compute the safety failure explanations, if any. The axiomatisation employed a proposed star-elimination
construction which enabled the sound extraction of explanations from Kleene ∗-free NetKAT programs.

The current revised version of the paper extends the results in [11] as follows.

1. We propose a notion of safety in the context of more general switch policies defined as arbitrary expressions over the
*-free, dup-free fragment of NetKAT.

2. We show that a NetKAT network behaviour is “safe” whenever it can be proven so according to the proposed equational
system used to derive safety failure explanations (see Corollary 1).

3. We formalize a concept of minimal, or relevant explanations for safety failures in NetKAT, based on a notion of “normal
forms for safety” (see Section 3.2).

4. We introduce SDN-SafeCheck, a practical tool for automatically computing safety failure explanations (see Section 4). To
the best of our knowledge, this tool is the first to provide automated failure explanations in NetKAT.

5. We provide experimental evaluations for SDN-SafeCheck based on the Topology Zoo dataset [12].

Structure of the paper. In Section 2 we provide an overview of NetKAT and the associated sound and complete axiomatisation.
In Section 3 we define the concept of safety in NetKAT and we introduce the notion of (minimal) safety failure explanation
and the axiomatisation which can be exploited in order to compute such explanations. In Section 4 we introduce the
Maude-based tool SDN-SafeCheck. Experimental evaluation is discussed in Section 5. In Section 6 we draw the conclusions
and pointers to future work.

2. Preliminaries

As pointed out in [6], a network can be interpreted as an automaton that forwards packets from one node to another
along the links in its topology. This leads to the idea of using regular expressions –the language of finite automata–, for
expressing networks. A path is encoded as a concatenation of processing steps (p · q. . . .), a set of paths is encoded as a
union of paths (p + q + . . .) whereas iterated processing is encoded using Kleene ∗. This paves the way to reasoning about
properties of networks using Kleene Algebra with Tests (KAT) [13]. KAT incorporates both Kleene Algebra [14] for reasoning
about network structure and Boolean Algebra for reasoning about the predicates that define switch behaviour.

NetKAT packets pk are encoded as sets of fields f i and associated values vi as in Fig. 1. Histories are defined as lists of
packets, and are exploited in order to define the semantics of NetKAT policies/programs as in Fig. 1. NetKAT policies are
recursively defined as: predicates, field modifications f ← n, union of policies p + q (+ plays the role of a multi-casting like
2

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
Fields f ::= f1 | . . . | fk

Packets pk ::= { f1 = v1, . . . , fk = vk}
Histories h ::= pk::〈〉 | pk::h

Predicates a,b ::= 1 Identity

| 0 Drop

| f = n T est

| a + b Disjunction

| a · b Conjunction

| ¬a Negation

Policies p,q ::= a F ilter

| f ← n Modi f ication

| p + q Union

| p · q Sequential composition

| p∗ Kleene star

| dup Duplication

�p� ∈ H →P(H)

�1� h � {h}
�0� h � {}

� f = n� (pk::h)�
{ {pk::h} if pk. f = n

{} otherwise

�¬a� h � {h} \ (�a� h)

� f ← n� (pk::h)� {pk[f := n]::h}
�p + q� h � �p� h ∪ �q� h

�p · q� h � (�p� • �q�) h

�p∗� h �
⋃
i∈N

F i h

F 0 h � {h} and F i+1 h � (�p� • F i) h

�dup� (pk::h)� {pk::(pk::h)}

Fig. 1. NetKAT syntax and semantics [6].

p + (q + r) ≡ (p + q) + r KA-PLUS-ASSOC a + (b · c)≡ (a + b) · (a + c) BA-PLUS-DIST
p + q ≡ q + p KA-PLUS-COMM a + 1≡ 1 BA-PLUS-ONE
p + 0 ≡ p KA-PLUS-ZERO a + ¬a ≡ 1 BA-EXCL-MID
p + p ≡ p KA-PLUS-IDEM a · b ≡ b · a BA-SEQ-COMM

p · (q · r) ≡ (p · q) · r KA-SEQ-ASSOC a · ¬a ≡ 0 BA-CONTRA
1 · p ≡ p KA-ONE-SEQ a · a ≡ a BA-SEQ-IDEM
p · 1 ≡ p KA-SEQ-ONE

p · (q + r) ≡ p · q + p · r KA-SEQ-DIST-L f ← n · f ′ ← n′ ≡ f ′ ← n′ · f ← n, if f �= f ′ PA-MOD-MOD-COMM
(p + q) · r ≡ p · r + q · r KA-SEQ-DIST-R f ← n · f ′ = n′ ≡ f ′ = n′ · f ← n, if f �= f ′ PA-MOD-FILTER-COMM

0 · p ≡ 0 KA-ZERO-SEQ dup · f = n ≡ f = n · dup PA-DUP-FILTER-COMM
p · 0 ≡ 0 KA-ZERO-SEQ f ← n · f = n ≡ f ← n PA-MOD-FILTER

1 + p · p∗ ≡ p∗ KA-UNROLL-L f = n · f ← n ≡ f = n PA-FILTER-MOD
1 + p∗ · p ≡ p∗ KA-UNROLL-R f ← n · f ← n′ ≡ f ← n′ PA-MOD-MOD

q + p · r ≤ r ⇒ p∗ · q ≤ r KA-LFP-L f = n · f = n′ ≡ 0, if n �= n′ PA-CONTRA
p + q · r ≤ q ⇒ p · r∗ ≤ q KA-LFP-R �i f = i ≡ 1 PA-MATCH-ALL

Fig. 2. NetKAT axiomatisation [6].

operator), sequencing of policies p · q, repeated application of policies p∗ (the Kleene ∗) and duplication dup (that saves
the current packet at the beginning of the history list). At this point, it might be worth mentioning that dup plays a role
in building the NetKAT language model but, as we shall later see, it is not necessary in our syntactic approach to failure
analysis.

Predicates, on the other hand, can be seen as filters. The constant predicate 0 drops all the packets, whereas its counter-
part predicate 1 retains all the packets. The test predicate f = n drops all the packets whose field f is not assigned value
n. Moreover, ¬a stands for the negation of predicate a, a + b represents the disjunction of predicates a and b, whereas a · b
denotes their conjunction.

Let H be the set of all histories, and P(H) be the power set of H . In Fig. 1, the semantic definition of a NetKAT policy p
is given as a function �p� that takes a history h ∈ H and produces a (possibly empty) set of histories in P(H). Some intuition
on the semantics of policies was already provided in the paragraph above. In addition, note that negated predicates drop
the packets not satisfying that predicate: �¬a�h = {h} \ �a�h. The sequential composition of policies �p ·q� denotes the Kleisli
composition • of the functions �p� and �q�.

The repeated iteration of policies is interpreted as the union of F i h, where the semantics of each F i coincides with the
semantics of the policy resulted by concatenating p with itself for i times, for i ∈N .

In Fig. 2 we recall the sound and complete axiomatisation of NetKAT. The Kleene Algebra with Tests axioms in Fig. 2,
have been formerly introduced in [13]. Completeness of NetKAT results from the packet algebra axioms in Fig. 2. The axiom
PA-MOD-MOD-COMM stands for the commutativity of different field assignments, whereas PA-MOD-FILTER-COMM denotes the
3

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
H1

A

H3

B

H2

H4

1

3
5 6

4

2

Fig. 3. A simple network.

commutativity of different field assignments and tests, for instance. PA-MOD-MOD states that two subsequent modifications
of the same field can be reduced to capture the last modification only. The axiom PA-CONTRA states that the same field of a
packet cannot have two different values, etc.

We write � e ≡ e′ , or simply e ≡ e′ , whenever the equation e ≡ e′ can be proven according to the NetKAT axiomatisation.
Assume, for an example, a simple network consisting of four hosts H1, H2, H3 and H4 communicating with each other

via two switches A and B , via the uniquely-labelled ports 1, 2, . . . , 6, as illustrated in Fig. 3. The network topology can be
given by the NetKAT expression:

t � pt = 5 · pt ← 6 + pt = 6 · pt ← 5+
pt = 1 + pt = 2 + pt = 3 + pt = 4

(1)

For an intuition, in (1), the expression pt = 5 ·pt ← 6 +pt = 6 ·pt ← 5 encodes the internal link 5 −6 by using the sequential
composition of a filter that keeps the packets at one end of the link and a modification that updates the pt fields to the
location at the other end of the link. A link at the perimeter of the network is encoded as a filter that returns the packets
located at the ingress port.

Furthermore, assume a programmer P1 as in [6] which has to encode a switch policy that only enables transferring
packets from H1 to H2. P1 might define the “hop-by-hop” policy in (2), where each summand stands for the forwarding
policy on switch A and B , respectively.

p1 � pt = 1 · pt ← 5 + pt = 6 · pt ← 2 (2)

In the expression above, the NetKAT expression pt = 1 · pt ← 5 sends the packets arriving at port 1 on switch A, to port 5,
whereas pt = 6 · pt ← 2 sends the packets at port 6 on switch B , to port 2.

At this point, from P1’s perspective, the end-to-end behaviour of the network is defined as:

(pt = 1) · (p1 · t)∗ · (pt = 2) (3)

In words: packets situated at ingress port 1 (encoded as pt = 1) are forwarded to egress port 2 (encoded as pt = 2) according
to the switch policy p1 and topology t (encoded as (p1 · t)∗).

More generally, assuming a switch policy p, topology t , ingress in and egress out, the end-to-end behaviour of a network
is defined as:

in · (p · t)∗ · out (4)

Note that, unlike the end-to-end NetKAT network behaviour in [6], the policy in (4) does not contain dup. As discussed
in more detail in Section 3.1, our (syntactic) approach looks at each operation within a NetKAT expression, hence there is
no need to use dup in order to record the individual “hops” that packets take as they go through the network.

Based on (3), in order to assess the correctness of P1’s program, one has to show that:

1. packets at port 1 reach port 2, i.e.,

� (pt = 1) · (p1 · t)∗ · (pt = 2) �≡ 0 (5)

2. no packets at port 1 can reach ports 3 or 4, i.e.,

� (pt = 1) · (p1 · t)∗ · (pt = 3 + pt = 4) ≡ 0. (6)
4

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
By applying the NetKAT axiomatisation, the inequality in (5) can be equivalently rewritten as:

� pt = 1 · pt ← 2 + e �≡ 0 (7)

with e a NetKAT expression. Observe that pt = 1 · pt ← 2 cannot be reduced further. Hence, the inequality in (5) holds, as
pt = 1 · pt ← 2 �≡ 0. In other words, the packets located at port 1 reach port 2. Showing that no packets at port 1 can reach
port 3 or 4 follows in a similar fashion.

3. Safety and failures in NetKAT

As discussed in the previous section, arguing on equivalence of NetKAT programs can be easily performed in an equa-
tional fashion. One interesting way of further exploiting the NetKAT framework is to formalise and reason about well-known
notions of program correctness such as safety, for instance. Intuitively, a safety property states that “something bad never
happens”. Ideally, the framework would provide a positive answer whenever a certain safety property is satisfied by the
program, and an explanation of what went wrong in case the property is violated.

Consider the example of programmer P1. The “bad” thing that could happen is that his switch policy enabled packets
to reach ports 3 or 4. One can encode such a hazard via the egress policy out � pt = 3 + pt = 4, and the whole safety
requirement as in (6). As previously discussed, the NetKAT axiomatisation provides a positive answer with respect to the
satisfiability of the safety requirement in (6).

Firstly, observe that our approach is syntactic in nature and it does not require recording individual packet modifica-
tions, or simulating actual “moves” in the NetKAT corresponding automata. Hence, it suffices to consider dup-free NetKAT
expressions. As we shall later see, this also contributes to deriving more concise, dup-free failure explanations.

Secondly, observe that from a more practical perspective, the Kleene-∗ is mainly used for ensuring a “looping” structure
to allow packet moves along the hops. Thus, in our work, we consider ingress (in), egress (out), switch policies (p) and
topologies (t) encoded in terms of dup-free, ∗-free NetKAT expressions, while the overall behaviour of a network is given
as in · (p · t)∗ · out.

We call NetKAT−dup,∗ the dup-free, ∗-free fragment of NetKAT. We further proceed by formalizing a safety concept in
NetKAT.

Definition 1 (In-out safe). Assume the NetKAT−dup,∗ expressions defining a network topology t , a switch policy p, an ingress
policy in, and an egress policy out, the latter encoding the hazard, or the “bad thing”. The end-to-end network behaviour is
in-out safe whenever the following holds:

� in · (p · t)∗ · out ≡ 0. (8)

Intuitively, none of the packages at ingress in can reach the “hazardous” egress out whenever forwarded according to the
switch policy p, across the topology t .

We call the size of the network the number of forwarding links within the network.

Remark 1. A notion of reachability within NetKAT-definable networks was proposed in [6] based on the existence of a
non-empty packet history that, in essence, records all the packet modifications produced by the policy in · (p · t)∗ · out.
This is more like a model-checking-based technique that enables identifying one counterexample witnessing the violation
of the property in · (p · t)∗ · out ≡ 0. As we shall later see, in our setting, we are interested in identifying all (minimal)
counterexamples. Hence, we propose a notion of in-out safe behaviour for which, whenever violated, we can provide all
relevant bad behaviours.

Going back to the example in Section 2, assume a new programmer P2 which has to enable traffic only from H3 to H4.
Assuming the network in Fig. 3, P2 encodes the HbH switch policy:

p2 � pt = 3 · pt ← 5 + pt = 6 · pt ← 4 (9)

The end-to-end behaviour can be proven correct, by showing that:

1. packets at port 3 reach port 4, i.e.,

� (pt = 3) · (p2 · t)∗ · (pt = 4) �≡ 0 (10)

2. no packets at port 3 can reach ports 1 or 2, i.e.,

� (pt = 3) · (p2 · t)∗ · (pt = 1 + pt = 2) ≡ 0. (11)
5

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
Nevertheless, it is easy to show that the composed policies p1 in (2) and p2 in (9) do not guarantee a safe behaviour.
Namely, in the context of the HbH policy p1 + p2, packets at port 1 can reach port 4, and packets at port 3 can reach port
2. This violates the correctness properties in (6) and (11), respectively:

� (pt = 1) · ((p1 + p2) · t)∗ · (pt = 3 + pt = 4) �≡ 0 (12)

� (pt = 3) · ((p1 + p2) · t)∗ · (pt = 1 + pt = 2) �≡ 0 (13)

In the next section, we provide a framework for explaining the failure of network safety as expressed in (12) and (13).

3.1. Explaining safety failures

Naturally, the first attempt to explain safety failures is to derive the counterexamples according to the NetKAT axiomati-
sation. Take, for instance, the end-to-end behaviour (pt = 1) · ((p1 + p2) · t)∗ · (pt = 3 + pt = 4) in (12). The axiomatisation
leads to the following equivalence:

(pt = 1) · ((p1 + p2) · t)∗ · (pt = 3 + pt = 4) ≡ (pt = 1 · pt ← 4) + e (14)

where e is a NetKAT expression containing the Kleene ∗. A counterexample can be immediately spotted, namely: pt = 1 ·
pt ← 4. Nevertheless, the information it provides is not intuitive enough to serve as an explanation of the failure. Moreover,
e can hide additional counterexamples revealed after a certain number of ∗-unfoldings according to KA-UNROLL-R and KA-
UNROLL-L in Fig. 2.

In what follows, the focus is on the following two questions:

Q 1: Can we reveal more information within the counterexamples witnessing safety failures?
Q 2: Can we reveal all the counterexamples hidden within NetKAT expressions containing ∗?

The answer to Q 1 is relatively simple: yes, we can reveal more information on how the packets travel across the topology
by removing the PA-MOD-MOD and PA-FILTER-MOD axioms in Fig. 2. Recall that, intuitively, this axiom records only the last
modification from a series of modifications of the same field.

The answer to Q 2 lies behind the following two observations. (1) From a practical perspective, in order to explain failures
it suffices to look at minimal forwarding paths within the network topology that lead from in to out. (2) Traversing the same
path twice does not add insightful information about the reason behind the violation of a safety property, as the network
behaviour is preserved in the context of that path. This is also in accordance with the minimality criterion invoked in the
seminal work on causal reasoning in [15], for instance. It is intuitive to see that given a NetKAT program in · (p · t)∗ ·out there
is a sufficient number of ∗-unfoldings that can reveal all the relevant paths from in to out. As shown by our experimental
evaluation, in most of the practical cases, it suffices to analyze paths of length equal with the size n of the network.

Theorem 1 states that safety in NetKAT programs reduces to showing that there are no paths from in to out for any
hop-by-hop forwarding strategy on individual switches complying to a switch policy p. The result in Theorem 1 follows
straightforwardly by Lemma 1 and Lemma 2.

Given a NetKAT policy q and a natural number m, we write qm to denote the repeated application of q for m times:

qm =
{

1, if m = 0

q · qm−1, if m ≥ 1.

We call repetitions expressions of shape pm .

Lemma 1. Let p, t be two NetKAT policies. The following holds:

∀n ∈N. (1 + p · t)n ≡ 1 + p · t + (p · t)2 + . . . + (p · t)n (15)

Proof. The proof follows immediately, by induction on n and by the Kleene Algebra axioms in Fig. 2.

Base case: n = 0. If n = 0 then (1 + (p · t))0 = 1, inferred based on the definition of Kleisli composition.

Induction step: Assume (15) holds for all k such that 0 ≤ k ≤ n. It follows that:

(1 + p · t)n+1 ≡(Kleisli comp.)
(1 + p · t)n · (1 + p · t) ≡(ind. hypo.)

(1 + p · t + (p · t)2 + . . . + (p · t)n) · (1 + p · t) ≡(KA-SEQ-DIST-L/R,KA-PLUS-IDEM)
1 + p · t + (p · t)2 + . . . + (p · t)n+

p · t + (p · t)2 + . . . + (p · t)n + (p · t)n+1 ≡(KA-PLUS-IDEM)
1 + p · t + (p · t)2 + . . . + (p · t)n + (p · t)n+1

Hence, (15) holds. �

6

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
Lemma 2. Let p, t, in, out be NetKAT policies. The following holds:

∀n ∈N. in · (1 + p · t)n · out ≤ in · (p · t)∗ · out (16)

Proof. Consider n ∈N . First, observe that

in · (p · t)∗ · out ≡
in · (1 + p · t + (p · t)2 + . . . + (p · t)n + (p · t)n+1 · (p · t)∗) · out

(17)

by KA-UNROLL-L, KA-UNROLL-R, KA-PLUS-IDEM and KA-SEQ-DIST-L, KA-SEQ-DIST-R. Consequently, by Lemma 1, the following also
holds:

in · (p · t)∗ · out ≡ in · (1 + p · t)n · out + in · (p · t)n+1 · (p · t)∗ · out (18)

Therefore,

in · (1 + p · t)n · out ≤ in · (p · t)∗.out

holds by the definition of the partial order relation ≤. �
Theorem 1 (Approximation principle for safety). Assume a network topology t, a switch policy p, an ingress policy in, and an egress
policy out encoding the hazard. The following holds:

� in · (p · t)∗ · out ≡ 0 iff ∀n ∈N. � in · (1 + p · t)n · out ≡ 0 (19)

Proof. The “if” case follows immediately, as by Lemma 2, the hypothesis in · (p · t)∗ · out ≡ 0 and the fact that 0 ≤ q for all
NetKAT policies q, the following holds:

∀n ∈N. 0 ≤ in · (1 + p · t)n · out ≤ in · (p · t)∗ · out ≡ 0.

For the “only if” case we proceed by reductio ad absurdum.
Assume ∀n ∈N. � in · (1 + p · t)n · out ≡ 0 and

in · (p · t)∗ · out �≡ 0. (20)

By the definition of the Kleene ∗ and the assumption in (20), it follows that there exists m ∈N such that:

in · (p · t)m · out �≡ 0.

By Lemma 1, we can see that the latter contradicts the hypothesis. Hence, our assumption is false. �
Remark 2 (Construction of �s). With these ingredients at hand, in accordance with Q 1 and Q 2, we consider an alteration of
the NetKAT axiomatisation. Recall that our NetKAT policies do not use dup. Our approach is purely syntactic (it does not
involve network packet analysis) and it looks at each operation within a NetKAT expression, in a “small-step” fashion. This
can be achieved by removing the axioms PA-MOD-MOD and PA-FILTER-MOD.

Let �s be the new entailment relation over the modified axiomatisation.

Remark 3. Note that �s is no longer complete. Nevertheless, the purpose of �s is not to reason about equivalence of arbitrary
NetKAT−dup,∗ expressions in an equational fashion, but to identify safety failure violations and corresponding explanations.
In what follows, we show a series of useful/interesting properties of �s .

Theorem 2 (Consistency of �s). Assume a NetKAT−dup,∗ policy p. The following holds:

� p ≡ 0 iff �s p ≡ 0 (21)

Proof. The key observation behind this proof is that 0-terms can only be derived according to the BA/PA-CONTRA axioms:

a · ¬a ≡ 0
f = n · f = n′ ≡ 0 if n �= n′

The removed axiom PA-MOD-MOD

f ← n · f ← n′ ≡ f ← n′
7

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
can only involve tests when used in combination with the PA-MOD-FILTER axiom:

f ← n · f = n ≡ f ← n

This implies:

f ← n · f ← n′ ≡ f ← n · f = n · f ← n′ · f = n′

Nevertheless, the right hand side of the above reduction can never be evaluated to 0 as commutativity of ← and = is only
allowed in the context of different fields, according to small PA-MOD-FILTER-COMM:

f ← n · f ′ = n′ ≡ f ′ = n′ · f ← n if f �= f ′

Moreover, it is straightforward to see that PA-FILTER-MOD

f = n · f ← n ≡ f = n

has no influence on the evaluation to 0-terms, as tests are not removed by this axiom.
It is, therefore, safe to conclude that (21) holds. �
Hence, according to Theorem 1 and Theorem 2, we can conclude that a network behaviour is “in-out-safe” whenever it

can be proven so according to �s:

Corollary 1 (Safety sound & complete). Assume the NetKAT−dup,∗ policies encoding a network topology t, a switch policy p, an ingress
policy in, and an egress policy out encoding the hazard. The following holds:

� in · (p · t)∗ · out ≡ 0 iff ∀n ∈N. �s in · (1 + p · t)n · out ≡ 0 (22)

As previously stated, our experimental evaluation showed that in most of the cases it suffices to consider a limited
number of ∗-unfoldings equal to the size n of the network, in order to reveal all the possible ways of reaching a hazardous
egress out from a given ingress in. In accordance, we introduce a notion of so-called n-safety failure explanations.

Definition 2 (n-Safety failure explanations). Assume the NetKAT−dup,∗ policies encoding a network topology t , a switch policy
p, an ingress policy in, and an egress policy out encoding the hazard. An n-safety failure explanation is a policy expl �≡ 0 such
that, for n ∈N:

�s in · (1 + p · t)n · out ≡ expl. (23)

For an example, we refer to the case of the two programmers providing switch policies p1 and p2 forwarding packets
from host H1 to H2, and from H3 to H4 within the network in Fig. 3. As previously discussed, the end-to-end network
behaviour defined over each of the aforementioned policies can be proven correct using the NetKAT axiomatisation. Never-
theless, a comprehensive explanation of what caused the erroneous behaviour over the unified policy p1 + p2 could not be
derived according �. Observe that the network consists of 6 forwarding links. Hence, 6 unfoldings were sufficient for the
new axiomatisation to entail the following explanation:

�s (pt = 1) · ((p1 + p2) · t)6 · (pt = 3 + pt = 4) ≡ pt = 1 · pt ← 5 · pt ← 6 · pt ← 4

showing how packets at port 1 can reach port 4. Similarly,

�s (pt = 3) · ((p1 + p2) · t)6 · (pt = 1 + pt = 2) ≡ pt = 3 · pt ← 5 · pt ← 6 · pt ← 2

shows how packets at port 3 can reach port 2.
Note that considering ∗-unfoldings equal to the size n of the network would not suffice if the network displays be-

haviours such that packets travelling in loops between the switches are meaningful. Nevertheless, in the context of safety
analysis, it makes sense to assume “fair” network behaviours, that eventually “escape” possible loops. Thus, all possible fair
behaviours can be captured via expressions of shape in · (1 + p · t)n · out.

Remark 4. The work in [6] proposes a “star elimination” method for switch policies not containing dup and switch assign-
ments. The procedure in [6] employs a notion of normal form to which each NetKAT policy can be reduced. The reason
for not using the aforementioned star elimination in our context is that the normal forms in [6] “forget” the intermediate
sequences of assignments and tests, and reduce policies to sums of expressions of shape (f1 = v1. fn = vn) · (f1 ←
v ′

1. fn ← v ′
n) where f1, . . . , fn are the packet fields. Hence, the normal forms exploited by the star elimination in [6]

can not serve as comprehensive failure explanations.
8

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
H1 A

B

H2
1 3

2

4 5

6

Fig. 4. A firewall.

We next provide an additional firewall example to better illustrate the ideas in Remark 4. Consider a scenario where
there are two hosts H1 and H2, a switch A, and a firewall B , as displayed in Fig. 4. In this setting the packets that reach A
are first forwarded to the firewall, and then to their destination, and the firewall blocks all non-SSH traffic. The policy and
the topology are defined as follows:

p � sw = A · (dst = H2 · f irewalled = 0 · pt ← 2+
dst = H2 · f irewalled = 1 · pt ← 3)+

sw = B · (typ = S S H · f irewalled ← 1 · pt ← 5)

t � sw = A · (pt = 2 · sw ← B · pt ← 4 + pt = 1 + pt = 3)+
sw = B · pt = 5 · sw ← A · pt ← 6

Assume that packets from H1 reaching to H2 constitute a safety violation. The in and out are defined as follows:

in � sw = A · pt = 1 · dst = H2 · f irewalled = 0

out � sw = A · pt = 3

Generally speaking, we are interested to check whether in · (p · t)∗ ·out reduces to 0 (indicating the absence of the hazard)
or not. Based on the framework devised in this paper, this reduces to checking the aforementioned equalities after unfolding
the expression (p · t)∗ for a number of times equal to the number of (oriented) links in the network. It is clear that in our
case we are interested to check whether in · (p · t)4 · out ≡ 0 or not. Our framework gives the following counterexample:

sw = A · pt = 1 · dst = H2 · f irewalled = 0·
pt ← 2 · sw ← B · pt ← 4·
typ = S S H · f irewalled ← 1 · pt ← 5 · sw ← A · pt ← 6·
pt ← 3

Remark 5. In [6], the completeness theorem of NetKAT is based on a language model:

α · π0 · dup · π1 · dup . . . dup · πn (24)

where α � f1 = n1 . . . fk = nk is called a complete test and π � f1 ← n1 . . . fk ← nk is called a complete assignment. Note
that the axiom that we removed, PA-MOD-MOD, plays an important role in bringing the expressions into this form. If we had strictly
followed the approach in [6], then for the above firewall example we would have obtained a counterexample of the following shape:

(sw = A · pt = 1 · dst = H2 · typ = S S H · f irewalled = 0)·
(sw ← A · pt ← 1 · dst ← H2 · typ ← S S H · f irewalled ← 0) · dup·
(sw ← B · pt ← 4 · dst ← H2 · typ ← S S H · f irewalled ← 0) · dup·
(sw ← A · pt ← 6 · dst ← H2 · typ ← S S H · f irewalled ← 1) · dup·
(sw ← A · pt ← 3 · dst ← H2 · typ ← S S H · f irewalled ← 1)

(25)

Observe that a more concise, dup-free counterexample is obtained from our approach, which we believe is better suitable in the context
of causality checking. Furthermore, certain information has been lost in the expression in (25), i.e. the assignments pt ← 2 and pt ← 5
do not appear in the counterexample. More generally, if there exist more than one assignment to a field inside p · t , then only the last
assignment is preserved. We believe this is not favourable for causality checking.
9

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
3.2. Minimal explanations

Note that the safety failure explanations in Definition 2 are not minimal. For an example, there might be cases in which
two explanation paths of shape

e1 � p′ · p′′ e2 � p′ · p̃ · p′′

are identified. In this case, we consider e1 as more “expressive” than e2. In this section we introduce a notion of minimality,
inspired by the seminal works on causal reasoning in [15,16]. We define minimality based on a notion of NetKAT normal
forms for safety (NFS). These normal forms are derived based on the additional equalities in Theorem 3.

Theorem 3 (Distribution of ¬). Let a, b and f = ni for i ∈ {1, . . . , m} stand for NetKAT predicates as in Fig. 1. The following hold:

¬1 ≡ 0 NEG-ONE
¬0 ≡ 1 NEG-ZERO

¬(¬a) ≡ a NEG-NEG
¬(f = ni) ≡ � j �=i f = n j NEG-ELIM
¬(a + b) ≡ (¬a) · (¬b) DIST-NEG-DISJ
¬(a · b) ≡ (¬a) + (¬b) DIST-NEG-CONJ

Proof Sketch. All the above equivalences follow according to the NetKAT semantics in Fig. 1. Consider, for instance, NEG-ONE.
The following holds:

∀h ∈ H : �¬1�h =(def .of¬)

{h} \ (�1�h) =(def .of 1)

{h} \ {h} =
{} =(def .of 0)

�0�h. �
Definition 3 (Token). We call a token the identity policy 1, the drop policy 0, a test (f = n), or a field modification f ← n.

Definition 4 (Normal forms for safety – NFS). A NetKAT policy p is in NFS if

p � �i∈{1,...,m} � j∈{1,...,n}tki, j

with tki, j a token, for all i ∈ {1, . . . , m} and j ∈ {1, . . . , n}.

Theorem 4 (NFS reduction). All policies defined over NetKAT−dup,∗ and repetitions can be reduced to equivalent policies in NFS.

Proof Sketch. Let pu denote the repetition-free policy obtained from p by performing all corresponding unfoldings, if any.
It can be shown by induction on the structure of pu that an NFS can be obtained by applying the NetKAT axioms in Fig. 2,
together with the equalities in Theorem 3 (in particular, KA-SEQ-DIST-L and KA-SEQ-DIST-R). �
Definition 5 (� / �). Let pi and p′

j be NetKAT policies in NFS. We write pi � p′
j whenever pi can be obtained from p′

j by
deleting k atoms at arbitrary positions in p′

j , with k ≥ 0. We write pi � qi whenever k > 0.

Definition 6 (Minimality). We call a policy in NFS minimal, with

p � �i∈{1,...,n}pi

whenever for all p j there is no pk , with j, k ∈ {1, . . . , n} such that p j � pk .
Assume p is in NFS, but is not minimal. We write min(p) for the NFS policy obtained by removing all pk , with k ∈

{1, . . . , n}, such that there exists p j , with j ∈ {1, . . . , n}, satisfying p j � pk .

Assume an explanation expl �≡ 0 as in (23). Let explN F S be expl reduced to its NFS. The minimal explanation with respect
to the violation of a safety property in NetKAT is represented by min(explN F S).
10

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
4. Tools for explaining NetKAT safety failures

In this section we introduce SDN-SafeCheck, a tool based on Maude [8], for automatically computing relevant explana-
tions for failures of NetKAT programs. Maude has been proven particularly suitable for defining semantics of programming
languages and reasoning about their properties. The Maude tools encompass, amongst others, a suite of model checkers and
the so-called Maude Formal Environment (MFE) [17] which includes the Church-Rosser checker and the termination tool.
In short, SDN-SafeCheck is based on Maude equational theories and it satisfies important properties such as Church-Rosser
(which guarantees uniqueness of results) and termination. SDN-SafeCheck provides all the explanations for NetKAT safety
failures.

4.1. A brief overview of the Maude system

Maude specifications come in two flavours: (1) as functional modules, that define data types and associated operations
by means of equational theories, or (2) as system modules, or rewrite theories, that specify concurrent transitions given
as a set of rewrite rules, or “oriented” equations. Such rules are triggered whenever the rule’s left hand side matches a
fragment of the system state and the rule’s condition is satisfied. In this work we utilize Maude functional modules and in
the following we discuss the main aspects of Maude functional modules. We then continue with a brief overview of the
MFE.

Functional modules. For an intuitive example, we next provide a Maude equational theory specifying NetKAT predicates.
First, note that a functional module is specified using the following syntax:

fmod ModuleName is DeclarationsAndStatements endfm (26)

In our case, the module name is PREDICATE, whereas the DeclarationsAndStatements includes, amongst others, the oper-
ators defined according to the syntax in Fig. 1, and the associated axioms in Fig. 2. Operators are specified over types, or
Maude sorts, defined within the current module via the keyword sort, or imported (possibly in a “protected” fashion) from
other modules. Properties such as associativity (assoc), commutativity (comm), idempotency (idem), neutral elements (id)
and precedence (prec) can be specified as attributes of operators. Note that associativity and idempotency cannot be used
together in any combination of attributes. Operators that play the role of constructors (ctor) for a certain type can also
be specified; this is the case of all the operators defining Predicates in Fig. 1. Variables (var) of a certain sort can also
be declared. Possibly conditional equations are introduced using eq or ceq, respectively. Identifiers can be specified for
equations as well. Comments are preceded by ---.

A Maude equational theory specifying NetKAT predicates and the additional boolean algebra axioms is given in Fig. 5.
The identity and drop NetKAT policies are defined in terms of two constants (or operators with arity 0), namely, the

constructors one and zero, respectively. Tests, disjunction and, respectively, conjunction are straightforwardly implemented
as the Maude binary operators _=_, _+_ and, respectively, _._.

Note that conjunction and disjunction are declared as associative and commutative as well. This is in accordance with
the NetKAT axioms KA-PLUS-ASSOC, KA-SEQ-ASSOC, KA-PLUS-COMM and BA-SEQ-COMM in Fig. 2. The advantage of using operator
attributes is that Maude will efficiently perform equational reasoning modulo these attributes. Negation is given as the unary
operator ~_. The remaining predicate axioms are specified via the equations [BA-PLUS-ONE], [KA-PLUS-ONE], [KA-
ONE-SEQ], [KA-ZERO-SEQ], [BA-EXCL-MID], [BA-CONTRA] and [BA-SEQ-IDEM] in Fig. 2. Note that KA-SEQ-ONE
and KA-SEQ-ZERO in Fig. 5 hold implicitly, due to the commutativity of sequential composition of NetKAT predicates.

Fields and their (natural) values are data structures defined within the corresponding Maude functional modules FIELD
and NATVAL, which PREDICATE is importing in a protected manner.

The MFE. In our approach, we are using: Maude 2.7.1 for Linux64,1 MFE 1.0b2 including the Church-Rosser Checker (CRC)
3p, and the Maude Termination Tool (MTT) 1.5j, and AProVE [18].

CRC plays a crucial role in resolving possibly different evaluations of a certain term by suggesting a series of so-called
critical pairs. Intuitively, the latter are lemmas which, if proven correct, lead to a confluent equational specification. For
instance, PREDICATE is Church-Rosser because the following lemmas were soundly added to the specification of NetKAT
predicates in Fig. 5, according to the additional equalities in Theorem 3:

eq ~ one = zero . eq ~ zero = one .

4.2. Immediate challenges and observations

In Fig. 5 we presented a straightforward implementation of NetKAT predicates in Maude. Next, we wanted to follow a
similar approach and devise a Maude equational specification of NetKAT programs in · (1 + p · t)n · out as in (23). Recall that
such programs are expressions defined over NetKAT−dup,∗ and repetitions (−)n .

1 http://maude .cs .illinois .edu /w /index .php /All _Maude _2 _versions.
2 https://github .com /maude -team /MFE /wiki /How-to -use -the -tool.
11

http://maude.cs.illinois.edu/w/index.php/All_Maude_2_versions
https://github.com/maude-team/MFE/wiki/How-to-use-the-tool

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
(fmod PREDICATE is
protecting FIELD .
protecting NATVAL .

sort Predicate .
var A : Predicate .

op one : -> Predicate [ctor] .
op zero : -> Predicate [ctor] .

op _=_ : Field NatVal -> Predicate [ctor prec 39] .
op _+_ : Predicate Predicate -> Predicate

[ctor assoc comm prec 43] .
op _._ : Predicate Predicate -> Predicate

[ctor assoc comm prec 40] .
op ~_ : Predicate -> Predicate [ctor prec 39] .

eq [BA-PLUS-ONE] : A + one = one .
eq [KA-PLUS-ZERO] : A + zero = A .
eq [KA-ONE-SEQ] : one . A = A .
eq [KA-ZERO-SEQ] : zero . A = zero .
eq [BA-EXCL-MID] : A + ~ A = one .
eq [BA-CONTRA] : A . ~ A = zero .
eq [BA-SEQ-IDEM] : A . A = A .

eq ~ one = zero .
eq ~ zero = one .
endfm)

Fig. 5. Equational theory of NetKAT predicates.

Typically, specifying such NetKAT policies would consist in the following straightforward steps:

1. Define a new sort Policy as a suprasort of Predicate.
2. Lift the signatures of + and · to Policy.
3. Define ← and the repetition operator (−)n accordingly.
4. Add the relevant set of axioms in Fig. 2 as Maude equations. (Recall that our approach for explaining safety failures

discards the axioms for ∗, dup, PA-MOD-MOD and PA-FILTER-MOD.)

Unfortunately, the recipe above was not successful. We proceed by describing the main difficulties we encountered.

Commutativity of ·. Note that, on the one hand, the NetKAT · operator plays the role of conjunction in the context of
predicates and is, therefore, commutative. On the other hand, · in the context of policies denotes sequential composition,
which is not commutative. Nevertheless, the packet algebra axioms in Fig. 2 use · in a uniform fashion, thus, implicitly
lifting · to the setting of policies as in step 2 above. Consequently, defining in Maude two operators capturing the two
different semantics of ·, and straightforwardly translating the axioms in Fig. 2 into equation is not an option.

Negation. The CRC returned a large number of critical pairs that involved the negation operator. Some of the pairs indicated
the necessity of distributing negation over disjunction and conjunction as in Theorem 3. In accordance, we considered:

¬(a + b) ≡ (¬a) · (¬b) DIST-NEG-DISJ
¬(a · b) ≡ (¬a) + (¬b) DIST-NEG-CONJ

(27)

Nevertheless, this did not help us eliminate all critical pairs either. Hence, we decided to apply a preprocessing step that
reduces arbitrary NetKAT policies to equivalent negation-free policies in two steps. First, negations are pushed to the level
of NetKAT predicates f = ni according to (27). Then, each negated predicate ¬(f = ni) is soundly replaced according to:

¬(f = ni) ≡ � j �=i f = n j NEG-ELIM (28)

As in [6], field values are drawn from finite domains.

Distributivity. We also noticed that the distributivity axioms BA-PLUS-DIST, KA-SEQ-DIST-L and KA-SEQ-DIST-R contribute to the
violation of the Church-Rosser property when used together within the equational theory of policies. For instance,

(a + b) · (a + c)
12

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
can be reduced according to BA-PLUS-DIST to:

a + b · c (29)

and it can be reduced according to KA-SEQ-DIST-R and BA-SEQ-IDEM, to:

a + b · a + a · c + b · c. (30)

From the perspective of safety failure explanations, the policy in (30) subsumes its counterpart in (29). Hence, BA-PLUS-DIST
can be discarded as well.

4.3. Equational specifications for explaining failures

In this section we introduce SDN-SafeCheck, a tool for explaining NetKAT safety failures. SDN-SafeCheck is based on the
Maude equational specification NetKAT−dup,∗ , implemented in a manner that enables accommodating the ideas in Sec-
tion 4.2. The functional modules behind SDN-SafeCheck are proven Church-Rosser and terminating. Hence, SDN-SafeCheck
provides the unique solution encoding all relevant explanations on how packets can travel from a specified ingress to the
undesired egress.

Assume the NetKAT−dup,∗ policies encoding a network topology t , a switch policy p, an ingress policy in, and an egress
policy out encoding an undesired property. Let P � in · (1 + p · t)n ·out be the corresponding NetKAT program to be analyzed
for safety failures. SDN-SafeCheck works in three steps to obtain all possible explanations, if they exist. In the following we
refer to these possible explanations as expl.

(I) Firstly, the tool recursively unfolds the policy (1 + p · t)n into a term U . Then, U is reduced to a term F uniquely ex-
pressed as a sum of policies that are union-free and negation-free. This is achieved in accordance with the equivalences (27)
and (28) in Section 4.2, and with the distributivity axioms KA-SEQ-DIST-L and KA-SEQ-DIST-R, respectively. At this stage, we
obtain explN F S .

(II) Next, F is reduced to F ′ according to the relevant NetKAT axioms implemented in Maude in a slightly modified
fashion, due to the issues related to the commutativity of ·, as discussed in Section 4.2. The main goal of this step is to
check if expl �≡ 0 holds.

For an intuition on the procedures performed at this step, consider a (possibly conditional) NetKAT axiom generically
denoted by l · r ≡ t (if C). With a commutative ·, it might be the case that F can be equivalently represented as a term F ′
within which l · r can be matched (whenever C holds). Nevertheless, given that a commutative · could not be considered
in the Maude specification of NetKAT policies, it might be the case that l · r does not match in F ′ (even if C holds). Con-
sequently, the aforementioned axiom might not be employed by the Maude equational reduction procedure, when starting
with F ′ .

The solution is to enable sound reductions according to l · r ≡ t (if C), in all possible contexts. More precisely, each such
axiom is implemented via a set of equations of shape:

l · r ≡ t (if C)

l · M · r ≡ t (if C and Cs)

where M is a policy term and Cs is a condition that ensures the sound application of the newly introduced equations. For
an example, we next provide a corresponding Maude implementation of the PA-CONTRA.

ceq (F1 = I1) . (F1 = I2) = zero if I1 =/= I2 .

ceq (F1 = I1) . M . (F1 = I2) = zero if I1 =/= I2 /\ not (F1 <- I2 occursInner M) .

Intuitively, (F1 <- I2 occursInner M) checks whether the field modification F1 <- I2 occurs within the policy
M. (F1 <- I2 occursInner M) is evaluated to true whenever the field modification F1 <- I2 occurs within M.
Otherwise, (F1 <- I2 occursInner M) is evaluated to false. We negate the result obtained from performing this
check and this way, the second equation soundly equates its left-hand side to zero, as the field F1 is never modified with
the value I2 within M and the initial value of the field F1 is different than I2, hence the test F1 = I2 will always fail.

We then apply certain axioms in order to simplify the expressions. For an example, we provide the implementation of
BA-SEQ-IDEM axiom.

eq A . A = A .

ceq (F1 = I1) . M . (F1 = I1) = (F1 = I1) . M if M ? F1 .

where A is of sort predicate. The operator ? works in a similar fashion to the operator occursInner. Intuitively,
occursInner checks whether a specific term occurs inside a given policy, whereas the operator ? only checks whether
there exist an assignment to a field in a given policy. The term M ? F1 is evaluated to true whenever F1 is not modified
13

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
Fig. 6. Experimental results.

within M. Otherwise, M ? F1 is evaluated to false. This way, it is ensured that the term F1 = I1 can commute inside
the terms in M as F1 is not modified within M, and then BA-SEQ-IDEM axiom can be applied.

Another phase in this step is to define a total order between the fields and reorder the terms according to this total
order. This phase is needed to obtain canonical forms. We introduce the operator < to define the total order and we then
apply the following equations to bring the expressions into a canonical form.

ceq (F1 <- I1) . (F2 <- I2) = (F2 <- I2) . (F1 <- I1) if F1 < F2 .

ceq (F1 = I1) . (F2 = I2) = (F2 = I2) . (F1 = I1) if F1 < F2 .

(III) Last, but not least, if the reduction at step (II) returns the unique term F ′′ �≡ 0 encoding all safety failure explanations,
then SDN-SafeCheck computes all relevant explanations when starting with F ′′ , according to the minimization procedure in
Section 3.2. As a result of this step we obtain the min(explN F S).

The full implementation of SDN-SafeCheck can be downloaded at: https://github .com /sen -uni -kn /SDN -SafeCheck.

5. Experimental evaluation

We performed experiments to evaluate the performance of our implementation on the publicly available Topology Zoo
dataset [12] which consist of 261 real-world network topologies. Given that, in essence, safety failure analysis reduces to
reachability analysis, in our experiments we analyzed the time required to check for reachability within these topologies.
More precisely, we checked point-to-point reachability between the two nodes in the longest path within the network. If
there were more than one such paths, then an arbitrary choice was made. We encoded the topologies in the dataset into
NetKAT and generated a destination-based shortest path policy to connect each node with every other node by using an
automated procedure similar to the one in [19]. The encoded topologies are made available in the link above alongside
the implementation of the tool. All the experiments were performed on a computer running Ubuntu 18.04 LTS with 8 core
3.7 GHz AMD Ryzen 7 2700x processors and 32 GB RAM.

A scatter plot of the obtained execution times is sketched in Fig. 6. We set a time limit of 12000 seconds for checking
the reachability property. For three topologies the computation did not finish under this time limit. The networks for which
the computation timed out consist of 754, 197 and 153 nodes, and correspond to first, second and fourth largest network in
the Topology Zoo dataset, respectively. The results show that for networks up to 70 switches a result is obtained under 60
seconds in most cases. For networks with more than 70 switches the variance of the obtained execution times is higher. We
observe that the longest path length plays a significant role in determining the running time of SDN-SafeCheck as networks
grow in size.

The execution time can be divided into two categories: IO time and analysis time. The IO time corresponds to the time
frame in which the expressions are written into a file and loaded into Maude. Analysis time corresponds to the time frame
in which the rewriting and the failure analysis is performed. In Fig. 7 we display a comparison between the time taken for
IO and the time taken for performing the analysis. We observe that the IO time dominates the total execution time.

6. Conclusions

In this paper we formulate a notion of safety in the context of NetKAT programs [6] and provide an equational frame-
work that computes all relevant explanations witnessing a bad, or an unsafe behaviour, whenever the case. The proposed
14

https://github.com/sen-uni-kn/SDN-SafeCheck

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
Fig. 7. Time comparisons.

equational framework is a slight modification of the sound and complete axiomatisation of NetKAT and, as shown by the
experimental evaluation, is parametric on the size of the underlying network topology. The new equational system is not
complete, as some of the original NetKAT axioms have been removed to enable more comprehensive failure explanations.
Nevertheless, the purpose of our framework is not to reason about equivalence, but to identify safety failure violations and
corresponding explanations.

Our approach is orthogonal to related works which rely on model-checking algorithms for computing all counterex-
amples witnessing the violation of a certain property, such as [20,21], for instance. The Maude system was exploited for
implementing SDN-SafeCheck tool for automatically computing safety failure explanations. Corresponding experimental eval-
uation based on the Topology Zoo dataset [12] is also provided.

The results in this paper are part of a larger project on (counterfactual) causal reasoning on NetKAT. In [22], Lewis
formulates the counterfactual argument, which defines when an event is considered a cause for some effect (or hazardous
situation) in the following way: a) whenever the event presumed to be a cause occurs, the effect occurs as well, and b)
when the presumed cause does not occur, the effect will not occur either. The current result corresponds to item a) in
Lewis’ definition, as it describes the events that have to happen in order for the hazardous situation to happen as well. The
next natural step is to capture the counterfactual test in b). This reduces to tracing back the explanations to the level of
the switch policy, and rewrite the latter so that it disables the generation of the paths leading to the undesired egress. The
generation of a “correct” switch policy can be seen as an instance of program repair.

In the future we would be, of course, interested in defining notions of causality (and associated algorithms) with respect
to the violation of other relevant properties such as liveness, for instance. We would also like to explain and eventually
disable routing loops (i.e., endlessly looping between A and B) from occurring. Or, we would like to identify the cause of
packets being not correctly filtered by a certain policy.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgements

The authors are grateful to Francisco Durán, Steven Eker and the Maude/RL community for their useful comments on
using the Maude Formal Environment, and to the reviewers of FROM 2019, for their feedback and observations. Special
thanks are addressed to Marcello Bonsangue and Tobias Kappé, for their insight into the formal foundations of NetKAT.
Many thanks to Hossein Hojjat and Dang Mai for their insight into the behaviour of SDNs and associated programming
languages. This work was supported by the Deutsche Forschungsgemeinschaft project “CRENKAT”, proj. No. 398056821.

References

[1] C. Buckl, A. Knoll, I. Schieferdecker, J. Zander, Model-based analysis and development of dependable systems, in: H. Giese, G. Karsai, E. Lee, B. Rumpe,
B. Schätz (Eds.), Model-Based Engineering of Embedded Real-Time Systems - International, Dagstuhl Workshop, Dagstuhl Castle, Germany, November
4–9, 2007, Revised Selected Papers, in: Lecture Notes in Computer Science, vol. 6100, Springer, 2007, pp. 271–293.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G.M. Parulkar, L.L. Peterson, J. Rexford, S. Shenker, J.S. Turner, OpenFlow: enabling innovation in campus
networks, Comput. Commun. Rev. 38 (2) (2008) 69–74, https://doi .org /10 .1145 /1355734 .1355746.
15

http://refhub.elsevier.com/S2352-2208(21)00039-0/bib3FC4E9F19677832EBC51DE1BC629AF71s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib3FC4E9F19677832EBC51DE1BC629AF71s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib3FC4E9F19677832EBC51DE1BC629AF71s1
https://doi.org/10.1145/1355734.1355746

G. Caltais and H.C. Tunç Journal of Logical and Algebraic Methods in Programming 121 (2021) 100676
[3] N. Foster, R. Harrison, M.J. Freedman, C. Monsanto, J. Rexford, A. Story, D. Walker, Frenetic: a network programming language, in: Proceeding of the
16th ACM SIGPLAN International Conference on Functional Programming, ICFP 2011, Tokyo, Japan, September 19–21, 2011, 2011, pp. 279–291.

[4] A. Voellmy, P. Hudak, Nettle: a language for configuring routing networks, in: W.M. Taha (Ed.), Domain-Specific Languages, IFIP TC 2 Working Confer-
ence, Proceedings, DSL 2009, Oxford, UK, July 15-17, 2009, in: Lecture Notes in Computer Science, vol. 5658, Springer, 2009, pp. 211–235.

[5] A. Voellmy, J. Wang, Y.R. Yang, B. Ford, P. Hudak, Maple: simplifying SDN programming using algorithmic policies, in: ACM SIGCOMM 2013 Conference,
SIGCOMM’13, Hong Kong, China, August 12-16, 2013, 2013, pp. 87–98.

[6] C.J. Anderson, N. Foster, A. Guha, J. Jeannin, D. Kozen, C. Schlesinger, D. Walker, NetKAT: semantic foundations for networks, in: The 41st Annual ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’14, San Diego, CA, USA, January 20-21, 2014, 2014, pp. 113–126.

[7] N. Foster, D. Kozen, M. Milano, A. Silva, L. Thompson, A coalgebraic decision procedure for NetKAT, in: Proceedings of the 42nd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL 2015, Mumbai, India, January 15-17, 2015, 2015, pp. 343–355.

[8] M. Clavel, F. Durán, S. Eker, P. Lincoln, N. Martí-Oliet, J. Meseguer, C.L. Talcott, The Maude 2.0 system, in: R. Nieuwenhuis (Ed.), Rewriting Techniques
and Applications, 14th International Conference, Proceedings, RTA 2003, Valencia, Spain, June 9-11, 2003, in: Lecture Notes in Computer Science,
vol. 2706, Springer, 2003, pp. 76–87.

[9] I. Pelle, A. Gulyás, An extensible automated failure localization framework using NetKAT, Felix, and SDN traceroute, Future Internet 11 (5) (2019),
https://doi .org /10 .3390 /fi11050107.

[10] Y. Deng, M. Zhang, G. Lei, An algebraic approach to automatic reasoning for NetKAT based on its operational semantics, in: Z. Duan, L. Ong (Eds.),
Formal Methods and Software Engineering - 19th International Conference on Formal Engineering Methods, Proceedings, ICFEM 2017, Xi’an, China,
November 13-17, 2017, in: Lecture Notes in Computer Science, vol. 10610, Springer, 2017, pp. 464–480.

[11] G. Caltais, Explaining SDN failures via axiomatisations, in: M. Marin, A. Craciun (Eds.), Proceedings Third Symposium on Working Formal Methods,
FROM 2019, Timişoara, Romania, 3-5 September 2019, in: EPTCS, vol. 303, 2019, pp. 48–60.

[12] P. Gill, M.F. Arlitt, Z. Li, A. Mahanti, The flattening internet topology: natural evolution, unsightly barnacles or contrived collapse?, in: M. Claypool, S.
Uhlig (Eds.), Passive and Active Network Measurement, 9th International Conference, Proceedings, PAM 2008, Cleveland, OH, USA, April 29-30, 2008,
in: Lecture Notes in Computer Science, vol. 4979, Springer, 2008, pp. 1–10.

[13] D. Kozen, Kleene algebra with tests, ACM Trans. Program. Lang. Syst. 19 (3) (1997) 427–443, https://doi .org /10 .1145 /256167.256195.
[14] D. Kozen, A completeness theorem for Kleene algebras and the algebra of regular events, Inf. Comput. 110 (2) (1994) 366–390, https://doi .org /10 .1006 /

inco .1994 .1037.
[15] J.Y. Halpern, Causality, responsibility, and blame: a structural-model approach, in: S. Benferhat, J. Grant (Eds.), Scalable Uncertainty Management - 5th

International Conference, Proceedings, SUM 2011, Dayton, OH, USA, October 10-13, 2011, in: Lecture Notes in Computer Science, vol. 6929, Springer,
2011, p. 1.

[16] J.Y. Halpern, A modification of the Halpern-Pearl definition of causality, in: Q. Yang, M.J. Wooldridge (Eds.), Proceedings of the Twenty-Fourth Inter-
national Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, July 25–31, 2015, AAAI Press, 2015, pp. 3022–3033, http://
ijcai .org /Abstract /15 /427.

[17] F. Durán, C. Rocha, J.M. Álvarez, Towards a Maude formal environment, in: G. Agha, O. Danvy, J. Meseguer (Eds.), Formal Modeling: Actors, Open
Systems, Biological Systems - Essays Dedicated to Carolyn Talcott on the Occasion of Her 70th Birthday, in: Lecture Notes in Computer Science,
vol. 7000, Springer, 2011, pp. 329–351.

[18] J. Giesl, C. Aschermann, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, J. Hensel, C. Otto, M. Plücker, P. Schneider-Kamp, T. Ströder, S. Swiderski, R.
Thiemann, Analyzing program termination and complexity automatically with AProVE, J. Autom. Reason. 58 (1) (2017) 3–31, https://doi .org /10 .1007 /
s10817 -016 -9388 -y.

[19] R. Beckett, M. Greenberg, D. Walker, Temporal NetKAT, in: C. Krintz, E. Berger (Eds.), Proceedings of the 37th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, ACM, 2016, pp. 386–401.

[20] F. Leitner-Fischer, S. Leue, Causality checking for complex system models, in: R. Giacobazzi, J. Berdine, I. Mastroeni (Eds.), Verification, Model Checking,
and Abstract Interpretation, 14th International Conference, Proceedings, VMCAI 2013, Rome, Italy, January 20-22, 2013, in: Lecture Notes in Computer
Science, vol. 7737, Springer, 2013, pp. 248–267.

[21] G. Caltais, S.L. Guetlein, S. Leue, Causality for general LTL-definable properties, in: B. Finkbeiner, S. Kleinberg (Eds.), Proceedings 3rd Workshop on
Formal Reasoning About Causation, Responsibility, and Explanations in Science and Technology, CREST@ETAPS 2018, Thessaloniki, Greece, 21st April
2018, in: EPTCS, vol. 286, 2018, pp. 1–15.

[22] D. Lewis, Causation, J. Philos. 70 (1973) 556–567.
16

http://refhub.elsevier.com/S2352-2208(21)00039-0/bib8054C210E6CF86D39734BA436C05A13Es1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib8054C210E6CF86D39734BA436C05A13Es1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib97BBD365899037AB9BE1EBD105680D07s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib97BBD365899037AB9BE1EBD105680D07s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bibEA9442667990D3DBF171B3A2A47161DDs1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bibEA9442667990D3DBF171B3A2A47161DDs1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib319A767800921E2975ECC13E8FBE32EDs1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib319A767800921E2975ECC13E8FBE32EDs1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib06657BD339916B360918EC9E720CB9CEs1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib06657BD339916B360918EC9E720CB9CEs1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib4A2778F04EF3614578DE404B959DF8C8s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib4A2778F04EF3614578DE404B959DF8C8s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib4A2778F04EF3614578DE404B959DF8C8s1
https://doi.org/10.3390/fi11050107
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib90AA2CCE1590B684EBD62E70E41745E3s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib90AA2CCE1590B684EBD62E70E41745E3s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib90AA2CCE1590B684EBD62E70E41745E3s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib109FB866B8BF9D4AB5AF8DD46185C8C6s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib109FB866B8BF9D4AB5AF8DD46185C8C6s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib409FF076AD8C418672D84521D7CA4EADs1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib409FF076AD8C418672D84521D7CA4EADs1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib409FF076AD8C418672D84521D7CA4EADs1
https://doi.org/10.1145/256167.256195
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1006/inco.1994.1037
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib34B08979F149A5394456C6485B755172s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib34B08979F149A5394456C6485B755172s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib34B08979F149A5394456C6485B755172s1
http://ijcai.org/Abstract/15/427
http://ijcai.org/Abstract/15/427
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib73A2E98B36C144F7E7019B9883268FA5s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib73A2E98B36C144F7E7019B9883268FA5s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib73A2E98B36C144F7E7019B9883268FA5s1
https://doi.org/10.1007/s10817-016-9388-y
https://doi.org/10.1007/s10817-016-9388-y
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib75748C203237F6ECB95B6DDDAA2447C1s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib75748C203237F6ECB95B6DDDAA2447C1s1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib96B9106401442659AAF483471C86D50Ds1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib96B9106401442659AAF483471C86D50Ds1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib96B9106401442659AAF483471C86D50Ds1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib6BC9621B53CF858F5B8C45FC2DC5E5BCs1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib6BC9621B53CF858F5B8C45FC2DC5E5BCs1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bib6BC9621B53CF858F5B8C45FC2DC5E5BCs1
http://refhub.elsevier.com/S2352-2208(21)00039-0/bibF7B5C468A44688346962963B178D0C6Es1

	Explaining safety failures in NetKAT
	1 Introduction
	2 Preliminaries
	3 Safety and failures in NetKAT
	3.1 Explaining safety failures
	3.2 Minimal explanations

	4 Tools for explaining NetKAT safety failures
	4.1 A brief overview of the Maude system
	4.2 Immediate challenges and observations
	4.3 Equational specifications for explaining failures

	5 Experimental evaluation
	6 Conclusions
	Declaration of competing interest
	Acknowledgements
	References

