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• The TQWT is applied to the voice signals of Parkinson’s Disease (PD) patients.
• The effectiveness of TQWT is compared with the state-of-the-art feature extraction methods.
• TQWT performed better or comparable to the state-of-the-art techniques in PD classification.
• MFCC and the TQW coefficients contain complementary information in PD classification problem.
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a b s t r a c t

In recent years, there has been increasing interest in the development of telediagnosis and telemonitoring
systems for Parkinson’s disease (PD) based on measuring the motor system disorders caused by the
disease. As approximately 90% percent of PD patients exhibit some form of vocal disorders in the earlier
stages of the disease, the recent PD telediagnosis studies focus on the detection of the vocal impairments
from sustained vowel phonations or running speech of the subjects. In these studies, various speech signal
processing algorithms have been used to extract clinically useful information for PD assessment, and the
calculated features were fed to learning algorithms to construct reliable decision support systems. In this
study, we apply, to the best of our knowledge for the first time, the tunable Q-factor wavelet transform
(TQWT) to the voice signals of PD patients for feature extraction, which has higher frequency resolution
than the classical discrete wavelet transform. We compare the effectiveness of TQWT with the state-of-
the-art feature extractionmethods used in diagnosis of PD from vocal disorders. For this purpose, we have
collected the voice recordings of 252 subjects in the context of this study and extracted multiple feature
subsets from the voice recordings. The feature subsets are fed to multiple classifiers and the predictions
of the classifiers are combinedwith ensemble learning approaches. The results show that TQWT performs
better or comparable to the state-of-the-art speech signal processing techniques used in PD classification.
We also find that Mel-frequency cepstral and the tunable-Q wavelet coefficients, which give the highest
accuracies, contain complementary information in PD classification problem resulting in an improved
system when combined using a filter feature selection technique.

© 2018 Elsevier B.V. All rights reserved.
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1. Introduction

Parkinson’s disease (PD) is a progressive neurodegenerative
disorder characterized by a large number of motor and non-motor
features [1]. PD is the second – after Alzheimer – most common
neurodegenerative disease seen in people over 60 [2]. The increas-
ing prevalence rates after the age of 60 [3] and the extended life
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span of PD patients with the help of pharmacological or surgical
interventions brings the need of accurate and reliable telemedicine
systems for PD diagnosis andmonitoring. Recently, many telediag-
nosis and telemonitoring systems have been proposed which aim
to detect the disease in its early stage, decrease the number of
inconvenient physical visits to the clinics for clinical examinations,
and lessen the workload of clinicians [4–13].

The PD telemedicine systems are based onmeasuring the sever-
ity of the symptoms using non-invasive devices and tools. One
of the most important symptoms seen in approximately 90% of
the PD patients in the earlier stages of the disease is vocal prob-
lems. Therefore, vocal disorders-based systems constituted the
focal point of the recent PD telemedicine studies [6–13]. In these
studies, various speech signal processing algorithms have been
used to extract clinically useful information for PD assessment, and
the calculated features were fed to various learning algorithms to
achieve reliable decision support systems.

The results obtained in the PD telemedicine studies showed that
the choice of feature extraction and learning algorithms directly
influences the accuracy and reliability of the proposed system.
Many of the studies that focused on distinguishing PD patients
from healthy subjects use a publicly available dataset [10] con-
sisting of 195 sound measurements belonging to 23 PD patients
and 8 healthy subjects. Another publicly available PD telediagnosis
dataset [6] used in the related studies consists of multiple speech
recordings of 20 PD and 20 healthy subjects. In both datasets, each
speech recording is represented with similar features including
vocal fundamental frequency, measures of variation in fundamen-
tal frequency, measures of variation in amplitude, measures of
ratio of noise to tonal components, nonlinear dynamical complex-
ity measures, and nonlinear measures of fundamental frequency
variation. Since most of the PD telediagnosis studies perform anal-
ysis on one or both datasets, the features extracted to represent
the voice signals in these datasets are the most commonly used
features in the related literature. There are literature studies that
proposed systems with almost 100% accuracy in discriminating
healthy subjects from PD patients on these small datasets. For
example, Guruler [9] combined k-means clustering based feature
weighting and Complex Valued Artificial Neural Network (CVANN)
for classification which reached an accuracy of 99.5%. In another
study, neural networks, DMNeural, regression and decision tree
algorithms were applied and an accuracy of 98.1% was proposed
with neural networks classifier [13]. However, although very high
classification rates have been reported on these datasets, the cross-
validation techniques used in these studies cause biased results
since each subject has multiple speech recordings and both train-
ing and test sets used in the experiments of these studies include
the voice recordings of the same subject [6,7]. It has already been
shown that when the dataset is split properly into training/test
sets using Leave-one-Subject-Out cross-validation technique, the
accuracy of the proposed model dramatically decreases [7]. Be-
sides, the number of subjects in these datasets was rather small
and the accuracies obtained using complex models on such small
datasets may not hold on another dataset with larger number
of subjects [6,7]. Therefore, the most commonly used features in
voice-based PD telediagnosis studies, which will be referred as
‘‘baseline features’’ in this paper, require further analysis with
larger dataset and a proper unbiased experimental setup.

Apart from the studies that used the baseline features, different
feature extraction methods have been analyzed in the related do-
main. Themost comprehensive study on the analysis of speech sig-
nal processing algorithms for the classification of PD evaluated 132
dysphonia measures grouped under 3 main feature subsets [14].
These feature subsets consist of many variations of jitter and shim-
mer measurements, several vocal production features built on the
concept of irregular vibration of the vocal folds, quantification

of noise, estimations of signal-to-noise ratio, and Mel-frequency
cepstral coefficients. However, in [14] rather than analyzing the
performance of each signal processing technique individually, the
features extracted using various signal processing techniques are
merged into a single feature set and a feature selection process has
been performed on this single feature set. In our study, we use
a different feature subset categorization. This approach has two
main reasons. First,we aim to analyze andpresent the performance
of each feature subset individually in distinguishing the healthy
subjects from PD patients using different classifiers. Second, we
prefer to analyze the baseline features as a separate group and
compare the performance of each feature subset with that of this
group since baseline feature set represents the most commonly
used feature set in this domain.

In the proposed study, to the best of our knowledge for the
first time, we also apply the tunable Q-factor wavelet transform
(TQWT), which has higher frequency resolution than classical
dyadic discrete wavelet transform [15,16], to the voice signals of
PD patients with the aim of extracting discriminative features. In
the TQWT, the frequency selectivity of the band-pass filters used
in decomposition and reconstruction stages can be determined by
changing certain parameters named as Q (Q-factor of band-pass
filters), r (oversampling rate or redundancy) and J (the number of
analysis and synthesis levels). Thus, an optimum time-frequency
representation can be obtained by choosing the optimal Q-factor,
which is defined as the ratio of the center frequency of the wavelet
to its bandwidth, according to the characteristic of the processed
signal. It is seen that when relatively higher Q values are employed
in the TQWT analysis, this paves the way for obtaining narrower
frequency responses allowing to obtain much better decompo-
sition of subbands to span the frequency range. Various kind of
overcomplete wavelet transforms (like the TQWT), in which the
frequency resolution of the wavelets can be adjusted, were suc-
cessfully used in various audio signal processing applications such
as time scaling of audio signals, tone scrolling [17], decomposition
of audio signals into components [18] and restoration of audio
signals [19]. These studies showed that the audio signals having
oscillatory components can be represented in the time-frequency
axis in an optimum manner when the proper Q values, which
fits the nature of processed signal, are set. The main motivation
of employing TQWT in our study is that by tuning the Q-factor
of the wavelet functions to unveil the characteristic behavior of
the healthy and PD speech samples, more efficient and robust
time-scale representations can be obtained. Hence, the TQWT is
proposed as the novel feature extractor in our study to catch the
distinctive changes in the time-frequency axis between the normal
and pathologic individuals.

Another important contribution of this study is the compar-
ison of the signal processing methods using ensemble learning
approaches which combines the predictions of seven classifiers.
The ensembles consists of the most commonly used classifiers in
the domain of dysphonia-based PD telediagnosis systems which
are support vector machines (SVM) with linear and RBF kernels,
Multilayer Perceptron, a probabilistic classifier (Naive Bayes), lo-
gistic regression, a decision-tree based learning algorithm (Ran-
dom Forest) and an instance-based learning algorithm (k-Nearest
Neighbor). By combining the predictions of multiple classifiers, we
aim to decrease the effect of classifiers in the comparison of feature
extraction methods and also the variance of the final classification
models. Additionally, we rank the features according to their rele-
vance with the class label and redundancy with the other features
using the minimum Redundancy-Maximum Relevance [20] filter
feature selection method and present the results obtained using
the top-ranked features.
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2. Materials and Methods

2.1. Dataset description

The data used in this study were gathered from 188 patients
with PD (107men and 81women) with ages ranging from 33 to 87
(65.1±10.9) at theDepartment ofNeurology in Cerrahpaşa Faculty
of Medicine, Istanbul University. The control group consists of 64
healthy individuals (23 men and 41 women) with ages varying
between 41 and 82 (61.1± 8.9). During the data collection process,
themicrophone is set to 44.1 KHz and following the physician’s ex-
amination, the sustained phonation of the vowel /a/ was collected
from each subject with three repetitions. All subjects were in-
formed about the data collection process, signed informed consent,
and attended the test voluntarily in accordance with the approval
of Clinical Research Ethics Committee of Bahcesehir University.

2.2. Feature extraction

Idiopathic PD is a neurodegenerative disorderwhich occurs due
to loss of neuromelanin-containing neurons in substantia nigra
pars compacta in the midbrain which leads to decrease of striatal
dopamine. In literature [21,22], itwas shown that PD affects speech
even at an early stage, and therefore speech features have been
successfully employed to assess PD andmonitor its evolution after
surgical or pharmacological treatment. Jitter, shimmer, fundamen-
tal frequency parameters, harmonicity parameters, Recurrence Pe-
riodDensity Entropy (RPDE), Detrended FluctuationAnalysis (DFA)
and Pitch Period Entropy (PPE) are the most popular speech fea-
tures used in PD studies [10–14]. In our study, these features are
referred as ‘‘baseline features’’ and employed for comparing the
performance of the other feature extraction methods analyzed in
this study. Except from the RPDE, DFA and PPE, the Praat [23]
acoustic analysis software is utilized for extracting baseline fea-
tures and the detailed expressions of baseline features are given
in Table 1. Speech intensity, formant frequencies and bandwidth-
based features are also extracted from the spectrograms of the
speech signals by using the Praat, and detailed explanations of
these three feature subsets are also given in Table 1.

In literature, Mel-Frequency Cepstral Coefficients (MFCCs),
which emulate the effective filtering properties of the human
ear, have been used as a robust feature extraction method in
the context of speaker identification, automatic speech recogni-
tion, biomedical voice assessment and Parkinson’s disease diag-
nosis [14,24,25]. In MFCC extraction method, cepstral analysis is
combined with spectral domain partitioning by using triangular
shape overlapped filter-banks and this results in a narrow spectral
sampling. In PD studies, MFCCs are employed in detecting subtle
changes in the motion of the articulators (tongue, lips) which are
known to be affected in PD [14]. In this study, mean and standard
deviation of the original 13MFCCS plus log-energy of the signal and
their first–second derivatives are employed as features resulting in
84 features which are given in Table 1.

In [26], as a novel approach in PD studies, wavelet transform
(WT) based features that were obtained from the raw fundamental
frequency (F0) contour of speech samples were employed as the
indicators of Unified Parkinson’s Disease Rating Scale (UPDRS).
The idea behind the usage of WT based features was that the
deviation from the exact periodicity of a sustained vowel would
be minimum for the healthy speech samples while there would be
significant deviations in pathological speech samples [27]. In our
study, to quantify the performance ofWTbased features, which are
obtained from the raw F0 contour and also from the log transform
of the F0 contour, as suggested in [28], 10-levels discrete wavelet
transform is applied to speech samples. After decomposition, the
energy, Shannon’s and the log energy entropy, and the Teager–
Kaiser energy of both the approximation and detailed coefficients

are calculated resulting in 182 WT features related with F0 as
shown in Table 1.

Additional to these features, in this study, features based on
vocal fold vibration pattern and the effects of noise on vocal fold
are extracted to quantify their success and to compare them with
the proposed TQWTbased features. In this context, theGlottis Quo-
tient (GQ), Glottal to Noise Excitation (GNE), Vocal Fold Excitation
Ratio (VFER) and Empirical Mode Decomposition (EMD) features
are calculated and the explanation of these features, which are
named as vocal fold features for simplicity, can be found in Table 1.

We utilized the Voice Analysis Toolbox [4,8,26] for extracting
the RPDE, DFA, PPE, MFCCs, WT based features and vocal fold
features.

An important contribution of this study is to employ the tunable
Q-factor wavelet transform (TQWT), which is a fully discrete and
over-completeWT, as themain feature extractor [15]. In the TQWT,
the Q -factor of the wavelets can easily be tuned according to the
behavior of signal to which it is applied. For the analysis of speech
signals, having oscillatory time domain behavior, a relatively high
Q -factor transform would be more appropriate, whilst a low Q -
factor transform would give better results in the process of non-
oscillatory signals. The TQWT consists of two channel filter-banks,
which are iteratively applied, and in each iteration, the low-pass
filter output is given to the next iteration low/high pass filters as
inputs. At the end of decomposition stage, considering the J as
the number of levels, there will be J + 1 subbands coming from
J high-pass filter and one final low-pass filter outputs. The third
parameter r is named as the redundancy or oversampling rate
which controls the undesired excessive ringing in order to localize
the wavelets in time domain without affecting their shape.

In the TQWT, filters having rational transfer functions, which
are computationally efficient and can be specified in frequency
domain, are employed in decomposition and reconstruction stages.
The TQWT wavelets have constant Q-factor, which is defined be-
forehand, during the transformation process and the transform
inherits the perfect reconstruction property that makes it a perfect
tool for signal manipulations like denoising, compression, etc. The
two channel filterbank structure of the TQWT for a single level can
be seen in Fig. 1. As it can be seen, for a single level transform,
the input signal s[n] is decomposed into low-pass subband signal
c0[n] and high-pass subband signal d1[n] with sampling rate fs
resulting in sampling frequencies αfs and βfs respectively. H0(ω)
and H1(ω) are the frequency responses of low-pass and high-pass
filters respectively, and they can be definedmathematically for the
jth level as follows:

H(j)
0 (ω) =

{∏j−1
m=0 H0

(
ω

αm

)
, |ω| ≤ αjπ

0, αjπ ≤ |ω| ≤ π
(1)

and

H(j)
1 (ω)

=

{
H1

(
ω

αj−1

)∏j−2
m=0 H0

(
ω

αm

)
, (1 − β) αj−1π ≤ |ω| ≤ αj−1π

0, for others ω ∈ [−π, π ]
(2)

The equivalent system for the jth level TQWTdecomposition for
the input signal s[n] and the generated low-pass/high-pass sub-
band signals c j[n]/dj[n] are given in Fig. 2. In the TQWT, by using
the scaling parameters α and β , the redundancy and Q parameters
can be expressed as:

r =
β

1 − α
, Q =

2 − β

β
(3)

In the proposed study, sustained phonations of the vowel /a/
are collected from healthy and PD subjects with the aim of con-
structing mathematical models that can be used in classification.
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Table 1
Overview of the feature sets used in this study (except TQWT).
Feature set Measure Explanation # of features

Baseline features

Jitter variants Jitter variants are employed to capture the instabilities occurred
in the oscillating pattern of the vocal folds and this feature
sub-set quantifies the cycle-to-cycle changes in the fundamental
frequency.

5

Shimmer variants Shimmer variants are also employed to capture instabilities of
the oscillating pattern of the vocal folds, but this time this feature
sub-set quantifies the cycle-to-cycle changes in the amplitude

6

Fundamental
frequency parameters

The frequency of vocal fold vibration. Mean, median, standard
deviation, minimum and maximum values were used.

5

Harmonicity
parameters

Due to incomplete vocal fold closure, increased noise
components occur in speech pathologies. Harmonics to Noise
Ratio and Noise to Harmonics Ratio parameters, which quantify
the ratio of signal information over noise, were used as features.

2

Recurrence Period
Density Entropy
(RPDE)

RPDE gives information about the ability of the vocal folds to
sustain stable vocal fold oscillations and it quantifies the
deviations from F0 .

1

Detrended Fluctuation
Analysis (DFA)

DFA quantifies the stochastic self-similarity of the turbulent
noise.

1

Pitch Period Entropy
(PPE)

PPE measures the impaired control of fundamental frequency F0
by using logarithmic scale.

1

Time frequency
features

Intensity Parameters Intensity is related with the power of speech signal in dB. Mean,
minimum and maximum intensity values were used.

3

Formant Frequencies Frequencies amplified by the vocal tract, the first four formants
were used as features.

4

Bandwidth The frequency range between the formant frequencies, the first
four bandwidths were employed as features.

4

Mel Frequency
Cepstral Coefficients
(MFCCs)

MFCCs MFCCs are employed to catch the PD affects in vocal tract
separately from the vocal folds

84

Wavelet Transform
based Features

Wavelet transform
(WT) features related
with F0

WT features quantify the deviations in F0 182

Vocal fold features

Glottis Quotient (GQ) GQ gives information about opening and closing durations of the
glottis. It is a measure of periodicity in glottis movements.

3

Glottal to Noise
Excitation (GNE)

GNE quantifies the extent of turbulent noise, which caused by
incomplete vocal fold closure, in the speech signal.

6

Vocal Fold Excitation
Ratio (VFER)

VFER quantifies the amount of noise produced due to the
pathological vocal fold vibration by using nonlinear energy and
entropy concepts.

7

Empirical Mode
Decomposition (EMD)

EMD decomposes a speech signal into elementary signal
components by using adaptive basis functions and
energy/entropy values obtained from these components are used
to quantify noise.

6

Fig. 1. Decomposition (a) and reconstruction (b) stages of single level TQWT. LPS and HPS represent low-pass scaling and high-pass scaling respectively.

The used healthy speech signals have oscillatory characteristics
due to nearly periodic vocal fold vibration pattern whereas this
nearly periodic pattern is distorted in PD speech signals. Therefore,
in this study, the parameters of the TQWT are tuned in accor-
dance with the time domain characteristics of speech signals. This
tuned parameter set yields improved frequency resolution in the
transform and more discriminative ability for the model. In the
TQWT algorithm, the performance of the transform relies on Q
(Q-factor), r (redundancy) and J (number of levels) parameters. It
was stated in [15] that the value of r must be chosen as equal or
greater than 3 for preventing the undesired ringings in wavelets.

Therefore, after numerous trial and error experiments, the suitable
values of r were chosen as 3, 4 and 5. Additionally, in order to
find the suitable number of analysis levels, J values were tested
between 5 and 50 for different Q values and best accuracy values
were found for the suitable Q-r pairs. Asmentioned before, Q value
controls the oscillatory behavior of wavelets and to obtain more
oscillatorywavelets higher Q valuesmust be employed. During the
experiments, reasonable Q values changing from 1 to 10 in step of
one were tested. It was seen that when higher Q values are chosen,
greater number of levels (J values) must also need to be employed
in order to span the entire frequency axis. After testing period,
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Fig. 2. The equivalent system for the jth level TQWT decomposition. c j[n] is the
low-pass subband signal (a) and dj[n] is the high-pass subband signal (b).

best parameter set giving the highest accuracy was found as Q=2,
r=4, J=35 in which a relatively higher Q-value was employed.
Additionally, the parameters were also set to Q=1, r=3, J=8 and
Q=4, r=5, J=45 in order to show the performance of the TQWT
when the Q parameter is not chosen properly.

In some cases, the sparse representation of wavelet coefficients
for the input signal can be more useful. Hence, the coefficient set
obtained with the TQWT from the healthy and PD speech samples
were processed with Basis Pursuit (BP) approach to obtain sparse
representations [15]. In BP, to get the sparse representation, the
below optimization problem must be solved:

min
a

∥a∥1 such that Φa = x (4)

where Φ is a matrix which represents decomposition functions of
the TQWT and a is the wavelet coefficients vector. After both the
normal and sparse decompositionswith the TQWT, energy/entropy
values of each level were calculated, and these energy/entropy val-
ueswere employed in healthy/PD subject classification as features.

2.3. Classification

Following the feature extraction step, the obtained feature vec-
tors are standardized so that each feature has a zeromean and unit
variance. Then the feature subsets are fed into multiple classifiers
to discriminate healthy subjects from PD patients. We also present
the results obtained with the TQWT with different Q values. The
aim is to evaluate the performance of each feature extraction
method in dysphonia-based PD telediagnosis systems. We use
leave-one-subject-out (LOSO) cross-validation technique to val-
idate the generalization ability of the classification models. The
LOSOmethod is basedon leaving the voice sample of one individual
out to be used for validation as if it is an unseen individual and
using the voice samples of the other subjects for training. Since
every subject provided three recording samples, we performed a
majority voting on the predictions of these samples to make the
final prediction on a subject.

The standardized features are fed to SVMs with linear and RBF
kernels, Multilayer Perceptron, Naive Bayes, Logistic Regression,
Random Forest and k-NN algorithms. We use overall accuracy, F1-
score andMatthew’s correlation coefficientmetrics to compare the
results of various feature subsets and classifiers.

2.4. Ensemble of classifiers

In ensemble classification, multiple individual learners are
trained on the same classification task and the class predictions are
combined using a combination strategy. The theoretical [29,30],
and empirical [31,32] findings on ensemble learning showed that
in order to obtain a better predictive final model, the individual
members of the ensemble must be diverse and accurate. Based
on this finding, in this study we use different types of learning
algorithms in our ensemble model which are SVMs with linear
and RBF kernels, Multilayer Perceptron, a probabilistic classifier
(Naive Bayes), Logistic Regression, a decision-tree based learning
algorithm (Random Forest), an instance-based learning algorithm
(k-NN).

The predictions of individual classifiers are combined using
voting or stacking strategies. The final prediction of an ensemble
consisting ofM members is:

y =

M∑
i=1

widi (5)

satisfying

wi ≥ 0, and
M∑
i=1

wi = 1 (6)

wherewi is the weight of the prediction of the ith ensemble mem-
ber and di represents the prediction of the ith ensemble member.
We apply simple majority voting and stacking with linear kernel
SVM in our experiments.

2.5. Feature ranking

We use the minimum redundancy-maximum relevance
(mRMR) [20] based filter feature selection method to determine
the most effective features and also to obtain a more robust and
accurate PD classification model by reducing the high dimensional
problem to a minimum set with maximum joint dependency.
The mRMR approach is based on maximizing the joint depen-
dency of top ranking variables on the target variable by reducing
the redundancy among them [20,33]. The mRMR algorithm has
been successfully applied to a wide variety of machine learning
problems as a preprocessing step including gene expression anal-
ysis [34], protein structure prediction [35], biomedical decision
support systems [12–14], hyperspectral data classification [36] and
churn prediction [37]. Therefore, we also apply mRMR to evaluate
the effectiveness of feature subsets and obtain a minimal set of
features to separate PDpatients andhealthy subjects. The overview
of the proposed end-to-end PD classification system is shown in
Fig. 3.

2.6. Statistical significance of the results

We perform McNemar’s test to examine whether the differ-
ences between the prediction performances of feature subsets are
statistically significant or not [38]. This test is used in dichotomous
classification to identify whether two algorithms have the same
error rate or not. In this test, after obtaining the predictions of
two classifiers, the number of samples misclassified by both (e00),
by the first algorithm but not the second (e01), by the second
algorithm but not first (e10) and the number of samples correctly
classified by both (e11) are calculated. Then, these values are placed
to a 2 × 2 contingency table. The null hypothesis is that the
classification algorithms have the same error rate, and, in that case,
we expect e01 = e10 [38]. A chi-square statistic with one degree of
freedom isworked out by the formula shownbelow to test this null
hypothesis:

(|e01 − e10| − 1)2

e01 + e10
∼ X2

1 (7)

If the value ofX2
1 is less thanX2

α,1, the twoalgorithms are considered
to have the same error rate. Otherwise, the null hypothesis is
rejected at significance level α. For α = 0.05, X2

0.05,1 = 3.84.

3. Experimental results

3.1. Classification performance of individual feature subsets

Table 2 shows the test set accuracies, F1-scores, and Matthew’s
correlation coefficients obtained with each individual feature sub-
set. The average performances of the classifiers and the ensemble
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Fig. 3. Overview of the proposed PD classification system.

Table 2
Results obtained with individual feature subsets.

Baseline features MFCC Wavelet features extracted from F0
Accuracy F1-Score MCC Accuracy F1-Score MCC Accuracy F1-Score MCC

Naive Bayes 0.53 0.55 0.21 0.56 0.58 0.31 0.72 0.71 0.24
Logistic regression 0.79 0.75 0.34 0.83 0.82 0.52 0.76 0.72 0.25
k-NN 0.75 0.71 0.22 0.80 0.77 0.40 0.73 0.71 0.22
Multilayer perceptron 0.77 0.75 0.32 0.82 0.81 0.49 0.78 0.74 0.31
Random Forest 0.77 0.75 0.31 0.83 0.80 0.49 0.77 0.75 0.31
SVM (Linear) 0.77 0.72 0.28 0.81 0.80 0.47 0.75 0.69 0.17
SVM (RBF) 0.77 0.74 0.29 0.84 0.83 0.54 0.77 0.72 0.25

Average 0.73 0.71 0.29 0.78 0.76 0.45 0.75 0.72 0.25
Std. Dev. 0.10 0.08 0.06 0.11 0.09 0.08 0.02 0.02 0.05

Ensemble with voting 0.79 0.75 0.34 0.84 0.83 0.53 0.75 0.70 0.19

Ensemble with stacking 0.78 0.75 0.33 0.83 0.82 0.52 0.77 0.74 0.29

Bandwidth + Formant Intensity-Based Vocal Fold-Based

Accuracy F1-Score MCC Accuracy F1-Score MCC Accuracy F1-Score MCC

Naive Bayes 0.74 0.69 0.15 0.57 0.59 0.29 0.69 0.70 0.26
Logistic regression 0.77 0.72 0.25 0.74 0.64 −0.04 0.76 0.72 0.25
k-NN 0.76 0.71 0.23 0.75 0.72 0.24 0.76 0.71 0.23
Multilayer perceptron 0.76 0.73 0.25 0.76 0.67 0.22 0.75 0.72 0.23
Random Forest 0.75 0.71 0.21 0.77 0.74 0.30 0.77 0.74 0.30
SVM (Linear) 0.75 0.64 0.0 0.75 0.64 0.0 0.76 0.68 0.18
SVM (RBF) 0.77 0.71 0.25 0.75 0.64 0.0 0.77 0.72 0.25

Average 0.76 0.70 0.18 0.72 0.67 0.17 0.75 0.71 0.24
Std. Dev. 0.01 0.03 0.10 0.08 0.06 0.15 0.03 0.02 0.04

Ensemble with voting 0.76 0.70 0.22 0.75 0.65 0.11 0.76 0.72 0.25

Ensemble with stacking 0.73 0.68 0.13 0.76 0.74 0.29 0.77 0.74 0.30

learning accuracies obtained by combining the predictions of clas-
sifiers using voting and stacking approaches are also presented in
Table 2. The highest accuracy of 0.84 with 0.83 F1-score and 0.54
MCC is achieved by feeding MFCCs to SVM-RBF classifier. It is seen
that the ensemble approach that combines the predictions ofMFCC
based classification models with voting and stacking strategies
did not improve the SVM-RBF results. McNemar’s test revealed
that the highest performed SVM-RBF model which uses the MFCC
features does not perform significantly better than the logistic
regression model which has the highest performance based on
baseline features at significance level 0.05 (X2

1 = 3.69).

3.2. Proposed classification method with the TQWT based features

The normal and sparse TQWT results with two different Q-
factor values are shown in Table 3. It is seen that the highest
individual classifier accuracy of 0.85 with 0.84 F1-Score and 0.57
MCC is obtained by feeding normal Q-wavelet transform features,

which are extracted with the relatively high Q -factor (selected as
2) analysis, into the multilayer perceptron classifier. It should be
noted that increasing the Q value too much (such as 4,5,6 and etc.)
does not increase the classification accuracy due to the need of
excessive number of analysis levels (J value). When the number
of decomposition levels become huge, the ratio of overlapped
information between subbands also dramatically increases and the
increasing number of features containing redundant information
causes curse of dimensionality problem in the learning step.

The highest individual, average and both voting and stacking
ensemble accuracies obtained with the best setting of the TQWT
are higher than or equal to that of the feature extraction meth-
ods given in Table 1. We performed McNemar’s test to assess
whether the error rate obtained with the best setting of TQWT
is significantly lower than the error rate obtained with the best
performed feature subset in Table 1, MFCC, and baseline features.
The statistical test revealed that the error rate of the best model
obtainedwith the TQWT features is significantly less than the high-
est performed model based on baseline features (X2

1 = 4.55), but
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Table 3
Results obtained with the TQWT feature extraction method (energy and entropy-based features).

Normal: Q = 1, r = 3, J = 8 Sparse: Q = 1, r = 3, J = 8

Accuracy F1-Score MCC Accuracy F1-Score MCC

Naive Bayes 0.66 0.68 0.35 0.75 0.76 0.36
Logistic regression 0.75 0.73 0.27 0.81 0.80 0.46
k-NN 0.78 0.74 0.32 0.80 0.77 0.39
Multilayer perceptron 0.78 0.77 0.39 0.75 0.74 0.28
Random Forest 0.79 0.76 0.36 0.81 0.78 0.42
SVM (Linear) 0.77 0.76 0.34 0.80 0.79 0.44
SVM (RBF) 0.81 0.78 0.42 0.81 0.78 0.45

Average 0.76 0.74 0.34 0.79 0.77 0.39
Std. Dev. 0.05 0.03 0.04 0.03 0.02 0.07

Ensemble with voting 0.80 0.78 0.40 0.81 0.79 0.45

Ensemble with stacking 0.80 0.77 0.40 0.79 0.75 0.34

Normal: Q = 2, r = 4, J = 35 Sparse: Q = 2, r = 4, J = 35

Accuracy F1-Score MCC Accuracy F1-Score MCC

Naive Bayes 0.73 0.74 0.39 0.78 0.78 0.43
Logistic regression 0.79 0.79 0.45 0.72 0.72 0.28
k-NN 0.83 0.81 0.50 0.81 0.79 0.45
Multilayer perceptron 0.85 0.84 0.57 0.78 0.77 0.39
Random Forest 0.83 0.82 0.52 0.82 0.80 0.47
SVM (Linear) 0.79 0.79 0.45 0.70 0.71 0.23
SVM (RBF) 0.85 0.83 0.56 0.80 0.78 0.41

Average 0.80 0.80 0.48 0.77 0.76 0.38
Std. Dev. 0.04 0.03 0.07 0.05 0.04 0.10

Ensemble with voting 0.85 0.84 0.57 0.79 0.78 0.4

Ensemble with stacking 0.84 0.83 0.54 0.81 0.80 0.47

Normal: Q = 4, r = 5, J = 45 Sparse: Q = 4, r = 5, J = 45

Accuracy F1-Score MCC Accuracy F1-Score MCC

Naive Bayes 0.64 0.66 0.26 0.69 0.71 0.32
Logistic regression 0.77 0.77 0.38 0.75 0.75 0.33
k-NN 0.79 0.76 0.37 0.80 0.78 0.41
Multilayer perceptron 0.79 0.78 0.41 0.77 0.77 0.37
Random Forest 0.81 0.80 0.45 0.80 0.78 0.41
SVM (Linear) 0.75 0.75 0.34 0.71 0.71 0.23
SVM (RBF) 0.80 0.76 0.38 0.77 0.73 0.27

Average 0.76 0.75 0.37 0.75 0.75 0.35
Std. Dev. 0.06 0.05 0.06 0.05 0.03 0.07

Ensemble with voting 0.81 0.80 0.45 0.76 0.75 0.31

Ensemble with stacking 0.80 0.79 0.43 0.77 0.76 0.34

not statistically different from the highest performed model based
on MFCC features (X2

1 = 0.09). These results show that the TQWT
features are effective in discriminating PD patients from healthy
subjects and could be used in dysphonia-based PD telediagnosis
systems.

3.3. Combining feature sets and classification with top-ranked fea-
tures

We selected the top-50 features by applying the mRMR feature
selection algorithm to the combination of all feature subsets. The
feature selection step was conducted on the training data at each
step to prevent feature subset selection bias. Table 4 demonstrates
the average number of selected features from each feature subset.
We present the accuracy resulted by the combination of all feature
subsets in Table 5 alongwith the resultswith holding out the TQWT
andMFCC subsets. As seen in Table 5, the highest metrics achieved
were 0.86 accuracy, 0.84 F1-score and 0.59MCCwith the SVM-RBF
classifier by using the top-50 features selected by mRMR on the
combination of all feature subsets.

4. Discussion

In this study, we have presented a detailed analysis of signal
processing techniques used in PD classification from voice record-
ings. The most commonly used set of features in this domain,

which is referred to as ‘‘baseline features’’ throughout this study,
has also been included as a separate group. We have collected the
voice recordings of 252 subjects (188 PD patients and 64 healthy
controls) in the context of this study, extracted various feature
subsets from the voice recordings and evaluated the effective-
ness of each feature subset and also their combination using a
number of classifiers. The predictions of the individual classifiers
were combinedwith ensemble stacking and voting approaches and
comparative analysis is presented over these ensemble accuracies
in order to decrease the classifier bias. We also performed feature
selection on the combination of all feature subsets analyzed in
this study aiming at determining the optimal minimal subset of
features.

In addition to the speech signal processing techniques used
in the related domain, in this study we used, to the best of our
knowledge for the first time, the TQWT for feature extraction in PD
classification. In our experiments, TQWT showed promising results
by achieving the performance of the state-of-the-art techniques
used in the context of discriminating healthy subjects from PD pa-
tients based on dysphonia measures. ThemRMR filter also showed
that the TQWT features carry important unique discriminative
information in separating healthy subjects from PD patients. In the
TQWT based feature extraction part, in addition to energy values,
Shannon entropy and Log Energy entropy values, which are both
used to quantify how much information is carried in the relevant
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Table 4
Average distribution of the top-50 features selected by the mRMR filter.

All feature subsets
except TQWT

All feature subsets
except MFCC

All feature
subsets

Baseline (n = 26) 5 5 4
Intensity (n = 3) 1 1 0
Bandwidth + Formant (n = 8) 5 2 2
MFCC (n = 84) 27 – 10
WT applied to F0 (n = 182) 4 1 1
Vocal Fold (n = 22) 8 4 3
TQWT (n = 432) – 37 30

Table 5
Results obtained with top-50 features selected by the mRMR filter on the combined feature subsets.

All feature subsets except TQWT All feature subsets except MFCC All feature subsets

Accuracy F1-Score MCC Accuracy F1-Score MCC Accuracy F1-Score MCC

Naive Bayes 0.65 0.67 0.29 0.81 0.81 0.51 0.83 0.83 0.54
Logistic regression 0.81 0.79 0.45 0.83 0.82 0.51 0.85 0.84 0.57
k-NN 0.82 0.79 0.48 0.84 0.82 0.53 0.85 0.82 0.56
Multilayer perceptron 0.83 0.81 0.50 0.81 0.80 0.46 0.84 0.83 0.54
Random Forest 0.79 0.78 0.40 0.83 0.82 0.51 0.85 0.84 0.57
SVM (Linear) 0.81 0.80 0.46 0.84 0.83 0.54 0.83 0.82 0.52
SVM (RBF) 0.83 0.81 0.50 0.83 0.81 0.50 0.86 0.84 0.59
Average 0.79 0.77 0.43 0.83 0.82 0.51 0.84 0.83 0.55
Std. Dev. 0.07 0.05 0.08 0.01 0.01 0.03 0.01 0.01 0.02

Ensemble with voting 0.81 0.80 0.46 0.85 0.84 0.57 0.85 0.84 0.58

Ensemble with stacking 0.82 0.81 0.49 0.83 0.81 0.52 0.84 0.82 0.55

subband, are calculated after decomposing speech signals into
subbands. ThemRMRrankings showed that the Log Energy entropy
features that have been extracted from the subbands representing
higher frequencies are among the most discriminative features.
This implies that in PD speech samples, there is a significant change
in the amount of information carried in higher frequencies and this
can be relatedwith the impact of incomplete vocal fold closure that
exhibits increased aero-acoustic noise. In the calculation process
of Log Energy entropy features, base-10 logarithm of the squares
of wavelet coefficients are taken and this logarithmic effect unveils
the importance of small changes in the high frequency information
which increases the discriminative power of models.

MFCCs have produced the second-best results in our experi-
ments. The mRMR rankings showed that MFCCs and TQWT coef-
ficients contain complementary information that provides higher
classification accuracy when used together in the PD classification
problem. This situation may occur due to the frequency domain
characteristics of the filter-banks used in the extraction of MFCCs
and TQWT. In the MFCC, the linear frequency axis information,
obtained as the output of discrete Fourier Transform, is mapped to
Mel scale to increase the performance of algorithmby imitating the
human hearing system. During this mapping operation two types
of filter-banks are employed, below 1000 Hz the filters are local-
ized linearly and above 1000 Hz the filters spread logarithmically.
On the other hand, in the TQWT, for all frequency values, constant
Q-factor filters are employedwith a logarithmic localization result-
ing in a bettermodel of humanhearing. Additionally, the frequency
domain representations of filters used in the extraction of MFCCs
have triangle shape while the TQWT analysis filters’ frequency
responses are bell-shaped with smoother transitions which may
result better frequency localization to catch abnormalities in PD
patients. As a final comment, unlike the MFCC extraction process
inwhich the temporal information is lost under the employedwin-
dow after applying discrete Fourier transform, the TQWT ensures
temporal localization during the transform for the relevant sub-
band. In PD speech samples, possible disruptions in vocal fold may
show themselves as transient waveforms and these abnormalities
can be detected with a higher success with the TQWT.

Another important contribution of this study is the comparison
of the signal processingmethods with different types of classifiers.

We should note that combining feature subsets and selecting a
minimal subset of features usingmRMR feature selection approach
improved the highest accuracies obtained with all the classifiers
except multilayer perceptron. The highest accuracy of 0.86 with
0.84 F1-score and 0.59 MCC is achieved by feeding top-50 features
selected bymRMR to SVM-RBF classifier. While more than a half of
these features belongs to the TQWT feature subset, the remaining
features belong to MFCC, vocal fold, bandwidth, formant and F0
related wavelet feature subsets.

We should note that higher accuracies than the best accuracy
obtained in this study have been reported in the literature for
PD classification problem. However, although the speech datasets
used in these studies contain multiple speech recordings per sub-
ject, most of these studies use leave-one-out cross validation tech-
nique which results in biased predictive models by sparing some
samples of an individual in the training and some for the testing.
This process creates an artificial overlap between the training and
test sets. It has been shown that when unbiased validation is
performed, the accuracies of the proposed models dramatically
decrease.We remark that themain goal of this paper is to compare
the feature extraction techniques used in speech-based PD clas-
sification problem with the proper unbiased techniques and also
to assess the effectiveness of the TQWT technique in this problem
rather than improving the accuracies of the existing models. As a
future direction, the TQWT technique, which has showed promis-
ing results in PD classification problem, can be used to predict
the Unified Parkinson’s Disease Rating Scale (UPDRS) score of PD
patients to build a robust PD telemonitoring system.
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