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Abstract. Inspired by the seminal works on causal analysis by Halpern
and Pearl, in this paper we introduce a causal model based on counterfactu-
als, adapted to finite automata models and with safety properties defined
by regular expressions. The latter encode undesired execution traces. We
devise a framework that computes actual causes, or minimal traces that
lead to states enabling hazardous behaviours. Furthermore, our frame-
work exploits counterfactual information and identifies modalites to steer
causal executions towards alternative safe ones. This can provide systems
engineers with valuable data for actual debugging and fixing erroneous
behaviours. Our framework employs standard algorithms from automata
theory, thus paving the way to further generalizations from finite automata
to richer structures like probabilistic or KAT automata.
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1 Introduction

Causal models and associated causal inference machineries are precious tools for
the interpretation and explanation of systems failures. Current testing and ver-
ification frameworks such as equivalence checking, for instance, assess whether
or not systems comply to their specifications, and at most will produce a coun-
terexample in case the system fails. Causal analysis, instead, plays an important
role in explaining complex phenomena that are actual sources of hazards by
adding, for example, additional information to counterexamples on how to avoid
the hazard.

A notion of causality often embraced and adopted by computer scientists
was introduced by Halpern and Pearl in their seminal works [9,10]. Their causal
model encodes complex logical structures of multiple events that contribute to
undesired effects, or hazards. In essence, the model is based on the the so-called
alternative worlds, originally proposed by Lewis [17]. In short, Lewis assumes
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the existence of worlds satisfying a sufficiency condition, where both the cause
and the effect occur, and other worlds satisfying a necessity condition, in which
neither the cause nor the effect occur. This enables formulating the counterfac-
tual argument, which defines a first condition to be satisfied by a cause, namely:
when the presumed cause does not occur, the effect will not occur either. More
complex aspects such as redundancy and preemption are also captured by the
causal model in [9,10]. For an intuition, redundancy refers to simultaneous events
that play the same role in enabling an undesired effect. Orthogonally, preemp-
tion refers to subsequent events that have the same power to enable the effect.
In both cases, the counterfactual test alone cannot determine the actual cause.
Last, but not least, causes in the spirit of [9] comply to a minimality requirement
which guarantees that only the relevant set of causal events is identified.

Related Work. Along time, several notions of causality have been proposed,
each of which tailored to the type of the system under analysis, and associated
correctuness specifications. Of particular interest for this paper are the works in [4,
5,15]. The aforementioned results propose trace-based adoptions of causality 4 la
Halpern and Pearl, applicable to automata models. These, in combination with
model checking-based methodologies, enabled computing causes for the violation
of safety and liveness properties in Kripke structures and labelled transition
systems, for instance.

Our work is closely related to the contribution in [5]. Given an automa-
ton model, the naive goal is to identify the shortest sequence of actions that
enable the effect, i.e., that can bring the system into a hazardous state. These
are called “causal traces”. Note that, in contrast with the often tedious coun-
terexamples identified by model-checkers, the minimality of causal traces implies
concise descriptions of systems faults. Thus, causal traces encode essential infor-
mation for systems engineers, for instance, and they can serve as a debugging
aid. As previously stated, in the spirit of Halpern and Pearl, our definition of
causality imposes a sufficiency condition: namely, whenever a causal trace is exe-
cuted, the effect is reached as well. However, important information on how to
actually avoid/fix hazardous behaivours can be extracted based on the afore-
mentioned set of alternative worlds (or traces in our model), that do not lead
to an undesired effect. Hence, we designed our causal model in the spirit of the
counterfactual criterion of Lewis and identified modalities to avoid hazardous
scenarios. Similarly to [4,5,15], we call these escape options — “events causal
by their non-occurrence”. This information can be exploited in order to steer
an execution towards an alternative safe one, with immediate applicability in
synthesizing schedulers, for instance.

A rich body of work successfully exploited the counterfactual argument for
fault analysis and debugging techniques. Examples related to counterexample
explanation in model checking are the works in [7,8,21], for instance. In [7] the
authors propose a framework for understanding errors in ANSI C programs,
based on distance metrics for program executions. In [8] the cause describing
the error includes the identification of source code fragments crucial to distin-
guishing success from failure, and differences in invariants between failing and
non-failing runs. Distance criteria have also been exploited in [21], in combi-
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nation with the so-called nearest neighbor queries to perform fault localization.
The why-because-analysis in [14] was used to reason about aviation accidents, in
a framework where Lamport’s Temporal Logic of Actions (TLA) described both
the behavior of a system, the (history of) hazards and the sequence of the states
leading to an accident. The work in [23] provides a comprehensive approach to
systematic debugging including, among others, delta debugging — a technique
for isolating minimal input to reproduce an error.

For finer notions of causal dependencies that distinguish between interleaving
and true concurrency, for instance, we refer to event structures [2,20]. Neverthe-
less, in our work, we adhere to the approaches in [4,5,15], and do not take into
consideration the order of events along execution traces.

Our Contributions. We propose a shifting bisimulation setting presented in [5]
to a trace based setting in the context of regular languages and automata the-
ory. The benefits are multifold. For instance, the paradigm change facilitates the
application of more standard algorithms from automata theory, in contrast with
the rather ad-hoc procedures in [4,5,15]. Furthermore, the current framework
enables using an expressive logic for defining safety properties in terms of reg-
ular expressions (or automata), instead of the ordinary Hennessy-Milner logic.
The language based approach to causality enables representing both hazards
and causal explanations in terms of automata — a format better accepted by
engineers. In addition, in this paper, we use regular languages (or full regular
expressions including Kleene-star) to encode non-occurrence of events. Previous
related works such as [4,5,15] can only provide finite sets of runs steering an
execution towards an alternative safe one. Orthogonal to the aforementioned
results, the current approach entails a “may” semantics of causality, instead of
“must”; nevertheless, we believe that the approach can be easily modified to
cater for the “must” version. Besides, in contrast with the results in [5], steering
executions are guaranteed not to jump over hazardous states by simply con-
catenating sequences causal by their non-occurrence and the causal trace. The
ultimate goal of the current work is to generalize from finite automata to richer
structures like probabilistic automata and NetKAT automata [1,6].

Structure of Paper. In Sect.2 we provide an overview of regular languages and
associated automata theory aspects. A running example is introduced in Sect. 3.
Section 4 defines the language-based model of causality, whereas in Sect.5 we
show how to compute actual causes and safe computations. In Sect. 6 we provide
an experimental evaluation of our method and in Sect.7 we discuss how our
model can be extended with tests and assignments. Section 8 concludes our work.

2 Preliminaries

In this section we recall few basic facts about regular languages, finite automata,
and regular expressions [18].

Let A be a finite set of actions that we refer to as an alphabet. A word or
string over A is a finite sequence a; ...a, of elements from A. We denote by ¢
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the empty word, i.e. the sequence of length 0, and write A* to denote the set of
(possibly empty) words over A. A language L is just a subset of words, that is
L C A*. We call a word w’ to be a prefix of a word w whenever w = w'w”. A
word w'’ is said to be a sub-word of a word w, if w’ is obtained by deleting one or
more elements of A at some not necessarily adjacent positions in w. We denote
by sub(w) the set of all sub-words of w. Note that sub(e) = 0. Also, € € sub(w)
but w ¢ sub(w) for every non empty word w.

A finite automaton (FA) is a 5-tuple M = (S, A,i,—, F'), where S is a finite
set of states, i € S is the initial state, F' C S is the set of accepting states and
—C Sx Ax S is the transition relation. For simplicity, we write s — ¢ whenever
(s,a,t) €—. A transition relation is called deterministic if for all s € S and
ac Aif s 5ty and s % ¢y then t; = to.

A string w € A* is accepted by an automaton M from a state s if either
(1) w=eand s € F, or (2) w = aw’ and there exists s — ¢ such that w’ is
accepted by M from the state t. The language accepted by a FA M is the set
L(M) = {w e A* | M accepts w from i}. Since for every FA M we can build a
FA N with a deterministic transition relation such that L(M) = L(N), without
loss of generality we will consider only finite automata with a deterministic
transition relation.

A language L over the alphabet A is said to be regular if there exists a
finite automaton M accepting it, that is L(M) = L. The class of all regular
languages is closed under union, intersection, concatenation, complement and
Kleene star. Here language union and intersections are the usual set theoretic
operations, whereas concatenation of two languages Li and Ly is given by the
set Ly - Ly = {wyws | wy; € Ly Awy € Lo}. Finally, for a language L, its Kleene
star closure is defined by L* = J, oy L™ where L = {¢} and L"*' = L. L"
for all n € N, thus denoting the concatenation of a language with itself a finite
number of time.

In this paper, we are interested in system communicating by message pass-
ing, and thus we will always assume that the alphabet A is partitioned in three
disjoint subsets A;, Ap, and Ap of input, output and private actions, respec-
tively. Notationally, for a € A we write a? if ¢ is an input action in A; and a! if
a is an output action in Ao, and use no markings for private actions in Ap. We
use o to denote an action that can be either input, output or private.

Let A and B be two alphabets with disjoint private actions, and assume
the set P is disjoint from Q. Given two finite automata M = (P, A,i,—, E)
and N = (Q, B, j,—n, F) their parallel composition is defined by the finite
automaton M || N = (P x Q, X, < i,j >,—, FE x F) where X1 = (A;\Bo) U
(B]\Ao), Yo = (Ao\B]) U (Bo\A[), Xp = (Ap U BP)U(A]ﬂBo) U (Ao N B[),
and — is the least transition relation such that

poup 0B qong ogA
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The topmost rules are about either private actions that are not affected by
the other automaton or communication actions that do not involve the other
automaton. The two rules at the bottom are about complementary communica-
tion actions a! and a? that are synchronized resulting in the private action a.
Note that when A = B with A; = Bo, Ao = B; and Ap = Bp = () then parallel
composition reduces to the product automata where all actions synchronize. In
the case A is completely disjoint from B then parallel composition results in the
so-called shuffle product. Other variation of synchronization product could be
defined in a similar way, including multi-process synchronization, hiding of suc-
cessful communication, value passing synchronization (for a finite value domain)
and synchronization parameterized by a finite subset of actions.

For the characterization of the parallel composition of two languages we need
first to introduce the projection function. Given two alphabets A; and Ay we
define the projection m; : (A1 UAs)* — Af by mi(e) = ¢, and m;(0-w) = o - m(x)
if o € A;, and m;(w) otherwise. Because projections are surjective functions
they have inverse 7, ! returning the set of strings that are projected into a
given one. More precisely, we define the inverse projection by m; *(w) = {x €
(A1 U Ag)* | mi(z) = w} for every w € Af. Projections and their inverses can
extended to languages by applying them to all the strings in the language. In
general we have that m;(m; '(L)) = L but for the converse it only holds that
L C 7, *(mi(L)). Note that if two alphabets A; and A have disjoint private
actions and we partition A; U A5 as in the alphabet of the parallel composition
of two automata, then projections will assign private actions of A; U Ay to
either private, input or output actions in A; unambiguously. Similarly, inverse
projections assign private actions to private actions, but may assign input and
output actions to private ones.

The parallel composition of two languages Ly C A} and Ly C A3 is the lan-
guage Ly || Ly on the alphabet A; U Ay defined as 7 *(L1) Ny ' (Ly). Basically,
the intersection takes care that dual communication actions will be synchronized,
and that disjoint private events will be shuffled with the others. As expected, we
have that L(M; || Ms) = L(M;) || L(Mz), implying that regular languages are
closed under parallel composition [22].

We conclude this section by introducing extended regular expressions, that
we may use as alternative syntax to FAs in order to reason about causality in
complex systems composed of several components potentially communicating
with each other.

Given an alphabet A including communication actions, extended regular
expressions are given by the following grammar:

ex=0|1]ala?|alle;e|let+e]|elle]e”, (1)

where a € Ap, a? implies a € Ay, and a! implies a € Ap. In process theo-
retic terms, 0 denotes no behavior, 1 denotes a terminating process. The further
building blocks of processes are (communication) actions. Processes can be com-
posed sequentially, non-deterministically, in parallel, or can loop a finite number
of times. Communication between process terms is performed based on syn-
chronizations between opposite communication actions, that play thus a sender,
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respectively, receiver role. In the sequel we often use A as shorthand for the
regular expression obtained by the finite set of every action in A, and —a as a
shorthand for the set of every action in A except a. Note that in general we
could extend negation to all regular expression, as regular languages are closed
under complement.

Ordinary regular expressions are expressions without any parallel compo-
sition. Except for the parallel composition we assume that an action cannot
be used as input and output in the same ‘sequential’ expression, i.e., regular
expression with no occurrence of the || operator. With this mild restriction we
can associate to each regular expressions e a language L(e) inductively as follows:

L(0)=0 L(ey; ea) = L(ey) - L(eg)
L(1) = {e} L(e; 4+ e2) = L(e1) U L(ez)  L(e*) = L(e)*
L(a) = {a}  Ller|[e2) = Llen) || L(e2)

It is well known [11] that the language of an ordinary regular expression is
regular. The same holds for our extended regular expressions, as we have seen
that regular languages are closed under parallel composition. This implies that
for every (extended) regular expression e there exists an automaton M such
that L(e) = L(M). We will not describe the construction here as it is outside
the scope of this paper.

3 A Railway Crossing Example

In this section we recall the railway crossing example from [5], and adapt it
to our present setting. The example consists of a car, a train, and a gate of a
crossing that communicates with the train. The gate can communicate its the
status of being closed (Gel) or open (Go!). The status changes to closed only
after the gate receives a message from the train that is approaching the crossing
(T'a?), and it can change to open only after it receives the message that the train
leaves the crossing (T17). The behavior of the gate is described by the following
regular expression:

G = (Go!™; (1+Ta?; Gc™; TI?))*.

When a train is approaching the crossing, it sends a message (T'a!). After that,
it will actually enter the crossing (T'c) and then send a message informing its
departure from the crossing (T'!!). This behavior is described by the following
regular expression:

T="Ta'; Tc;TI.

Finally, a car can approach the crossing (Ca), wait as long as the gate is closed
(Ge?), eventually observe the gate being open (Go?), and only then it may enter
the crossing (C'c¢) and leave the crossing afterwards (C1). The regular expression
encoding this is given by:

C=Ca; Ge?"; Go?; Cc; ClI.
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The FAs corresponding to the above three regular expression are illustrated in
Fig. 1. Note that the car can enter the crossing only after the gate is open,
whereas the gate enters the state of being open only after a train signals its

departure.
Ca Go Ce cl 0
start —»|
Ge? Ta Ta Ta Ta Ta
9] Zo0? g Ca . Ce cl
Bt (D) () (T (7Y

. Tal Te I Te Te Te Te Te
FA of Train: start 0 g ° L ° @ ¢ ¢ ¢ ¢ ¢
o Ca @ e Ce cl

TI?

Tl Tl a Tl

FA of Gate: start @.° Get <> ( > a /\
Ta? C C

Fig. 1. The car, train and gate as FAs Fig. 2. The railway system as a FA

In Fig. 2 we see the automaton describing the railway system that results by
the parallel composition of the three regular expressions: C || T' || G where, for
simplicity, we renamed the states. For example, the initial state O corresponds
to the state (1,1,1) and the only accepting state is @ corresponding to (5,4, 1).
The red states @) and @ will be used in the next section as examples of states
leading to a hazard situation: a car entering the crossing and not leaving it before
the train enters the crossing too.

4 A Language-Based Causal Model

In this section we introduce a notion of causality with respect to a so-called
hazard, or effect expressed in terms of regular expressions. The current causal
framework is inspired from the model introduced in [5] and massaged into the
setting of FAs with the goal to use trace semantics instead of bisimulation,
and define different system properties in terms of regular expressions (such as
reachability) instead of the ordinary Hennessy-Milner logic.

In short, a hazard is a regular language specified by a regular expression e
(or the corresponding automaton). It is said to occur in a FA M representing
our model whenever there is a finite (and possibly empty) string ¢ = aqg ... an,
in M such that after ¢ we may observe the hazard, that is, L(c; e) N L(M) # 0.
In this case, we say that ¢ may enable the hazard e in M. Additional conditions
that have to be satisfied by ¢, such as minimality and non-occurrence of events,
are formalized in Definition 1.

For an intuition, consider the railway crossing example of the previous
section. A hazardous situation can happen whenever both the train and the
car enter the crossing, and none of them leaves the crossing before the other one
enters it. The regular expression encoding this hazard is:

= (Cc; (2CU)*; Te+Te; (-TH)*; Ce); A* (2)
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Note that the hazard situation can terminate with any string in A*. This is
to guarantee that after a trace c¢ enables e, their concatenation will contain
behaviors accepted by the automaton, and thus the hazard is observed. It is
straightforward to see that in the FA in Fig. 1 it is possible to reach the above
hazard with the string ¢y = Ca Go leading to the state @), but also with the
string co = CaGoTa leading to the state @). In fact, the intersection of the
language of the hazard e with that of the automaton M starting from either
state @) or @ instead of @) is non-empty. Furthermore, state @) and @ are both
reachable from the initial state ().

We may say that c; does a better job at describing the relevant sequence
of actions that, if triggered, lead to a hazard because it is a minimal sequence
enabling it. Moreover, we see that it is possible to avoid the hazard by “deco-
rating” the string ¢; with the strings T'a, TcTl and, respectively, CcCl. This
can result, for instance, in the string w = Ta CaTcTl Go Cc Cl which does not
lead to a hazard. Sequences such as Ta, T'cTl and CcCl are called causal by
non-occurrence in works such as [4,5]. Non-occurrence is essential for describing
how certain dangerous situations, if controllable, can be avoided within a system.
This concept plays an important role in our definition of causality.

As formalized in Definition 1, non-occurrence of events is captured in terms
of the so-called computations [5]. The latter are strings in a regular language,
typically denoted by m, built on top of a string ¢ = ag...a,, and “decorated”
with strings di, . .. ,diz+17 with ¢ € I, where [ is a finite set of integers, such that:

_ i g i
wen = w=dyaod] - andy .

Intuitively, given a trace c that enables a hazard, strings in 7 describe all the
alternative runs (such as w above) that execute all actions in ¢ and avoid the
hazard. The only requirement is that all strings specified by 7 are observable
executions of M; ie., for a given FA M, = C L(M). Notice that 7 being a
regular language means that it can be expressed as a regular expression r, and
because all strings in 7 contain ¢ as subword, we have r = X ] with r] =
Té; ao; r{; Qg ri 41 for some finite indexes j and k and regular expressions
ri 41+ For simplicity, we sometimes write r in lieu of .

The next definition formally introduces decorated causes for a FA M with
respect to a hazard e.

Definition 1 (Causality for FAs). Let M = (S, A, so,—,F) be a FA, e be
a reqular expression over A, denoting a hazard, and ¢ € A*. We say that the
computation 7 built on top of ¢, with m C L(M), is a decorated cause of the
hazard e if

AAC1: The string ¢ may enable e — L(c; €) N L(M) # ()

AAC2.1: If the effect e is not observed then it has not been caused by ¢ —
Vw € L(M\L(A*; ¢e) : (L(w; e)NL(M) =0) = (c € sub(w) Vw € ).

A AC2.2: Strings of m are safe, i.e., they do not cause the effect e —
Vwem:wg L(A*; e) AN(L(w; e)NL(M) =0)
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AAC3: Minimality —
for all ¢ € sub(c) there is no computation ©' built on top of ¢ with «’ C
L(M), that satisfies AAC1-AAC2.2 with respect to the string ¢’ and the
hazard e.

We call ¢ as above a causal trace, and sometimes write Cause.(e, M) to
denote the corresponding decorated cause w. We let Causes(e, M) be the union
of all Cause.(e, M).

Intuitively, AAC1 identifies a scenario where the string ¢ enables the hazard
e in M. Note that AAC1 entails a “may” semantics of causality, instead of
“must”, as ¢ does not always have to lead to e. Catering for the “must” version
requires modifying AAC1 to L(c; e) C L(M). AAC2.1 is a necessity condition
according to which, if a word w cannot enable e, then either w does not contain
the causal trace ¢ (meaning it is an execution bringing not to the hazard), or it
has been decorated with events that eliminate the possibility of executing the
hazard. Note that AAC2.1 can be equivalently expressed (by modus tollens)
as a sufficiency condition stating that a string w enables the hazard e whenever
the causal trace is contained in w but it is not decorated with elements causal
by their non-occurrence that would avoid the execution of the hazard:

Vw € L(M)\L(A*; ¢e) : (c € sub(w) ANw & w) = (L(w; e) N L(M) # 0)

A AC2.2 requires causal traces decorated with events causal by their non-
occurrence to avoid the hazard. Furthermore, note that ¢ itself cannot be a
safe computation in m, because otherwise AAC2.2 would contradict AAC1.
Observe that AAC2.2 is reminiscent of the traditional counterfactual criterion
of Lewis, as it allows to test the dependence of e on ¢ under certain contingencies
encoded, in our case, in terms of non-occurrence of events. We refer to [10] for
more insight on the so-called structural contingencies. AAC3 is the minimal-
ity condition that requires to consider decorated causes entailed by the shortest
causal traces c satisfying AAC1-AAC2.2.

We conclude the section with a few examples intended to clarify certain
aspects of the above definition and the differences with the work [5]. To begin
with, we illustrate the role played by loops in the decorations of computations.

Ezample 1. Consider the automaton M in Fig. 3 and let the hazard be expressed
by the regular expression e = ¢; A*, meaning that we have to avoid executing
action c.

Clearly, the string ab is a possible cause for the hazard. Hence,
Causeqy(e, Mq) for this example can be encoded via the regular expression:
a; f; h*; b; g. Note that as a result of considering the decorations as regular
expressions, all finite repetitions of the loop are conveniently represented with
the Kleene star operator. The work in [5] handles loops in the decorations by
unfolding the loop only a finite number of times specified a-priori, hence, only
the string afh"bg would be describing hazard avoidance, for all n < k and some
fixed k.

In the second example, we consider the case when there are no possible
decorations to steer a causal trace away from its hazard.
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a b c b
f
b g b f
O OO (=

Fig. 3. Automaton M; Fig. 4. Automaton M

Example 2. Consider the automaton Ms in Fig. 4 and let the hazard be as before
expressed by the regular expression e = ¢; A*.

In this example, there are two possible causal traces, namely, a and b. There
are no possible decorations for the causal trace a to make it avoid the hazard,
whereas, there exists a decoration for the causal trace b with Causey(e, Ma) =
d; b; f. Whenever there are no computations 7 satisfying Definition 1 for e in
M w.r.t. a trace ¢, we say that the hazard e, if enabled by ¢, is unavoidable in
M.

In the above two examples there was no actual difference if we would have
used ¢ as hazard instead of the regular expression c¢; A*. In the next example
we show a FA where the two expressions entail different decorated causes.

Ezample 8. Consider the automaton M3 in Fig.5 and the hazards e = ¢; A*
and e’ = c.

HSoaslb@c@d@
OO O

Fig. 5. Example 3

For both hazards, ab is the causal trace, but

Causeqp(e,M3) =a; f;b; g
Causeqp(e’,M3) = a; f;b59 + a;b;¢;d

Observe that the string abed is considered safe (i.e., avoids the hazard) according
to Causeqp(e’, M3) but is not considered safe in Causesqp(e, M3), wheres the
string afbg is considered safe in both cases. This is different than the usual
notion of safety (modeled as in e and thus forbidding any possible continuation
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after the hazard) as ¢’ allow to overpass the hazard if the system does not stop
there. In fact, the expression €’ asserts that the trace cannot halt with the action
c. Accordingly, both abed and afbg are valid strings that satisfy this condition
and thus avoid the hazard e’. On the other hand, the expression e asserts that
the action ¢ followed by any possible sequence of actions (i.e., in A*) constitutes
a violation, hence, the action ¢ cannot be observed at any point in an execution.
Therefore, only afbg is a valid execution that will avoid the hazard e. It is
essentially not possible to define properties similar to e with the approach in [5],
as they allow jumping over a hazardous state while executing strings in .

5 Computing Causes

Given a FA M = (S, A,i,—, F) and an effect specified by a regular expression e
on A, we show an algorithm for computing the set Causes(e, M) using standard
operations on automata and graphs. The algorithm first computes the set of
loop-free traces that lead to the hazard e. Then, for each one of them, it deter-
mines the associated computation satisfying conditions AAC2.1-AAC2.2 in
Definition 1. The union of all such computations will give a first approximation
of the set Causes(e, M). We will then show below how to obtain precisely the
set Causes(e, M) by requiring the minimality condition AAC3 in Definition 1.

Algorithm 1: Computing Causes
Input: A FA M = (S,A,i,—, F), an effect e.
Output: The set of decorated causes Causes(e, M).

(1) Compute the set of traces that lead to e by following the steps:
(1.1) For all s € S, construct the FA P, = (S, A, s, —, F') and compute the
following intersection:
L(P}) = L(Ps) N L(e).
(1.2) Construct the automaton P = (S, A,i,—, F') where F' ={s| L(P;) # 0}.
(1.3) Compute all simple paths from the intial states ¢ and a final state f € F
in P.
(1.4) Let CausalTraces be the set of all strings in L(P) labeling the paths
computed in (1.3).
(2) Forall c=aop...an € CausalTraces, compute Cause.(e, M) by :

(L(A";a0; A" ...; A5y A%) \ {e}) 0 (L(M) \ (L(A";€) U L(P)))

(3) Return the union of all the languages computed in step (2) as Causes(e, M).

Next, we discuss the underlying ideas behind the certain steps of Algorithm 1
and then provide a proof of correctness for the algorithm. We first compute all
traces that enable e by constructing in steps (1.1) and (1.2) the automaton P that
accepts exactly all traces in M possibly causing the effect e. The only difference
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between the automata P and M is their set of final states. The procedure for
constructing P first involves constructing a set of automata P;, for all the states
s of the automaton M, such that s is the initial state in P and accepts strings of
the language of the hazard e. If the intersection of L(Ps) with L(e) is non-empty,
then the corresponding state is considered as a final state in the automaton P
(step (1.2)). As a result, the strings in L(P) are exactly those strings bringing
M to a state of where the hazard is activated. For our railway crossing example
in Sect. 3 with the hazard given by the regular expression in (2), the automaton
P would be the one in Fig.2 with states ) and @) as the only final states.

In step (1.3) we compute CausalTraces as the subset of strings accepted by
P via a simple path starting from the initial state and ending in a final state.
These paths correspond to the set of loop-free traces that lead to the hazard
e. While this condition does not guarantee minimality (see discussion below) it
already reduces the set of possibly causal traces to a finite set. In general, L(P)
will be infinite, if it involves a loop in the automaton.

For each of the above finitely many causal traces, in step (2), we compute
the set of associated computations. For a given possibly causal trace c, this is
done by subtracting all the traces which enable the effect (i.e., L(P)) and all
the traces which observe the effect (i.e., L(A*;e)) from L(M) and then take the
intersection of the resulting language with the language resulted from ¢ decorated
with non-occurrence in all possible ways. Note that the intersection computed in
step (2) may be empty, meaning that the hazard e is unavoidable when executing
the actions of ¢. For our running example in Sect. 3, the possibly causal traces
computed by the algorithm are CaGo and CaGoTa. Examples of strings in the
associated computations are CaGoTaCcCIT Tl and CaGoCcClTaTcTl. Note
that the first string avoids the hazard for both possibly causal traces, while the
latter is a string that avoids the hazard for CaGo.

Finally, the union of the resulting languages in the step (2) of Algorithm 1
is returned as a first approximation of the set of all decorated causes of M
for the hazard e. For this set, the following theorem guarantees that conditions
AAC1-AAC2.2 hold. However, condition AAC3 may fail to hold.

Theorem 1. The computations in Causes(e, M) returned by Algorithm 1 sat-
1sfy conditions AAC1-AAC2.2 by construction.

Proof. The set Causes(e, M) returned by Algorithm 1 is obtained as the union of
all Causes.(e, M) for all ¢ € CausalTraces. Elements in this sets are obtained in
step (1.4). These strings are computed based on the language that the automaton
P (constructed in step (1.2)) recognizes. By construction, € L(P) implies
there is y € L(e) such that zy € L(M). Hence L(z; e) N L(M) # . Since
CausalTraces C L(P), condition AAC1 holds.

In order to show that AAC2.1 holds for some ¢ € CausalTraces, take a
string x accepted by M that is not in L(A*; e). Assume that L(x; e)NL(M) = 0.
Then « ¢ L(P) because otherwise, as we have just seen above, there would
exist y € L(e) such that xy € L(M). Therefore, x € L(M)\(L(A*;e) U L(P)).
Because CausalTraces C L(P), it follows that  # ¢ for any possibly causal
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trace c¢. We have now two cases: for every ¢ € CausalTraces either ¢ € sub(x)
or not. In the latter case AAC2.1 holds. In the other case ¢ € sub(x) and thus
x € L(A*;a9; A*;...; A% ay,; A®), from which it follows based on step (2) that
x € Causes.(e, M), and thus AAC2.1 holds.

It remains to show that AAC2.2. For some possibly causal trace ¢ €
CausalTrace let © € Causec(e, M). We must show that © ¢ A*e and that
L(z;e) N L(M) = (. The first part of the conjunction in AAC2.2 holds
because by the construction in step (2) Cause.(e, M) cannot contain strings
from L(A*;e). Similarly, the second part of the conjunction holds because L(P)
is subtracted from L(M) in the same step.

Condition AAC3 does not necessarily hold for Cause.(e, M) used by the
Algorithm 1. In fact, for possibly causal traces z,y € CausalTraces, if x €
sub(y) then any sub-string of z is also a sub-string of y. In other words, for
ag - =x #Yy=by-- by we have

L(A%ap; A% .. .; A% an; A%) C LA™ bo; Ao 5 A% by AY) (3)

By step (2) of Algorithm 1 we thus have that Causes, (e, M) C Causes,(e, M).
Note that it must be the case that m > n for x € sub(y). We can there-
fore easily compute the smallest sets of safe computations by removing from
the set Causallraces all strings y that have another possibly causal trace
x € CausalTraces of smaller length as sub-word. In our running example, the
trace CaGo is clearly a sub-word of the other one CaGoTa, and indeed, the com-
putation for CaGoTa is included in the computation for CaGo as well. Hence,
only the causal trace CaGo satisfies the minimality condition AAC3 .

6 Experimental Evaluation

In this section, we provide an experimental evaluation and assess the applicability
of our method. We developed a tool prototype implementing our approach and
evaluated the time performance by computing the decorated causes on randomly
generated FAs with growing size. The implementation is based on Python and
closely follows Algorithm 1. The inputs to our tool are a FA and a regular
expression which describes the effect on the given FA. The output of our tool is
an automaton which characterizes the set of all decorated causes with respect
to the given inputs. In our implementation we utilized the BRICS automaton
library [19] for performing standard automaton operations.

We evaluated our tool in the following experimental setting: we generated
random FAs by using the libalf [3] framework. In the process of generating FAs
we fixed the size of the alphabet to 5. We then generated over 1000 FAs with
increasing number of states and achieved a maximum of 300 states. Figure6
shows an example of a FA with 5 states that was generated randomly by libalf.
For each generated FA we also randomly computed an effect for which the dec-
orated causes are determined. We fixed the size of the effect length to 3. All the
experiments were conducted on a computer running Ubuntu 20.04.3 with 8 core
1.8GHz Intel i7-10510U processor and 16 GB RAM.
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1-49 50-99 100-149 150-199 200-249 250-300
Number of States

Fig. 6. Randomly generated FA with 5 Fig. 7. Experimental results
states.

The results of our experiments are displayed in Fig. 7. We group the randomly
generated FAs by their number of states and report the average running times in
each group. We only report the times of the experiments in which the decorated
causes were not empty. The results indicate that for relatively small FAs with
less than 100 states, a result is obtained within 10 s. For larger FAs with 250
to 300 states, a result is obtained in 3 min on average and within 15 min at
maximum. We remark that these results are obtained without any attempts to
tailor the standard automaton operations to our setting.

Table 1. Average size of obtained decorated causes.

Number of states in the input FA

1-49 | 50-99 | 100-149 | 150-199 | 200249 | 250-300
# States 71 | 185 266 422 484 560
# Transitions 236 | 654 997 1565 1862 2177
# Potential Causes 81 |328 10476 21932 44750 73318
# (Minimal) Causes | 3 8 10 18 10 22

In Table1 we summarize some information on the automata that recognize
the decorated causes returned by the algorithm. Depending on the number of
states of the automata given as input, we report the average number of states
and transitions of the returned automata, the average number of causes and the
average number of minimal causes obtained. As to be expected, the size of the
automata of the output increased linearly with that of the input. However, the
number of potential causal traces computed increases exponentially. That is not
the case for the number of minimal causal traces, as it increases only marginally
when the size of the input increases. In fact, in the majority of the cases, the
number of minimal causes is less than 5, regardless of the size of the given input
automaton.
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7 Extensions

To illustrate the generality of our causal model we briefly discuss possible exten-
sions so to consider addition of tests and assignments.

Adding Tests: KAT. The set of regular expressions we considered in (1) can
be extended with a set B of Boolean tests that we assume generated from a finite
set At of atoms, meaning that every b € B is equivalent modulo the equations
of the Boolean algebra to a finite disjunction of atoms in At. This way one can
model basic programming constructs, like conditionals, loops, guarded actions,
and assertions using tests in B and actions in A.

Kozen [12] showed that the above extensions of regular expressions, called
KAT (Kleene algebra with tests) expressions, plays the same role with regular
sets of guarded strings as ordinary regular languages play for regular expressions.
Here a guarded string is an ordinary string over the alphabet A U At, such that
the symbols in A alternate with the atoms At. Formally, a guarded language is
a subset of (At x A)* x At.

A deterministic KAT automaton recognizing guarded strings [13] is just a
deterministic finite automaton (S, X, i, —, F') with X = At x A and F' C S x At.
The only differences are thus the transition relations that is now labeled by
guarded actions (a, a), and the accepting states, that are now labeled with atoms
marking the end of an accepted string. The idea is that an action a is executed
only when its guard « (pre-condition) is true, and a string is accepted only
in states where the post-condition holds. We say that a guarded string w €
(At x A)* x At is accepted by a KAT automaton M from a state s if either (1)
w =« and (s,a) € F, or (2) w = (a,a)w’ and there exists s —  such that w’
is accepted by M from the state ¢t. The language accepted by a KAT automaton
M is the set L(M) = {w € (At x A)* x At | M accepts w from i}.

Our causal model for automata extends naturally to KAT automata by con-
sidering hazards e as KAT-expressions and causes c as strings in (At x A)*. Safe
computations in M for the hazard e with respect to ¢ are non-empty strings
of L(M) satisfying AAC1 as in Definition 1 but with respect to the alphabet
(At x A) instead of A only. Also the algorithm for computing causes needs basi-
cally no adjustment, but for the way how operations on automata are computed.

Adding Assignments: NetKAT. NetKAT [1] is a network programming
model, which is used for specifying and verifying the packet-processing behav-
ior of software-defined networks. In a nutshell, it is a variation on KAT that
considers actions not as abstract elements of an alphabet A but rather as state
transformers, like assignments, that are executed when a precondition « is sat-
isfied and modify it into a post-condition 3.

For a given set of atoms At of a Boolean algebra B, a deterministic NetKAT
automaton [6] is a deterministic FA M = (S, X, 4, —, F') such that o = At x At
and F' C S x (At x At). The transition relation — is thus labeled by pairs of
atoms («a,3) and so are the accepting states. The interpretation of these pair
of atoms is that they represent pre-conditions and post-conditions of one-step
executions.
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A string w € At x At x At* is accepted by M from a state s only when post-
conditions match the subsequent pre-condition, meaning that either (1) w = a8

and (s,«a, ) € F, or (2) w = (af)w’ and there exists s 28, 4 such that Bw' is
accepted by M from the state ¢. Note that in the last condition is crucial that
w’ is not the empty string. The language accepted by a NetKAT automaton M
is the set L(M) = {w € At x A x At* | M accepts w from }.

As for KAT automata, our causal model for automata extends naturally
to NetKAT automata too, with hazard represented by NetKat expressions [6],
causes as strings in At*, and safe computations as strings in L(M) that can
be projected into a cause by deleting some atoms and satisfying the rest of the
conditions of Definition 1.

8 Conclusions

In this paper we moved the causal model proposed in [5] from labeled transition
systems to finite automata in order to obtain a language-based causal model for
safety. The model is in-line with the notion of causality described in a logical
context in [9] in the sense that a hazard may be observed if and only if it
has been caused. Analogously to the alternative worlds of Lewis [16], we also
considered decorated causes as alternative to causes in the sense that they allow
executing all actions of a cause interleaved with other actions that guarantee
hazard avoidance.

We treated only the case when causes may enable a hazard while strings of the
decorated causes must avoid it. While it can be interesting to consider a stronger
notion of causes as strings ¢ that bring the automaton M to states where the
hazard e is inevitable for any of its possible extensions (i.e., by changing AAC1
to L(c; e) C L(M)), such a change would imply that there would be no causes
in our railway system example.

We have also presented an algorithm to compute decorated causes, relying
only on basic automata theoretic operations. The algorithms could be improved,
using model checking techniques for marking those states in which a hazard is
enabled, and search techniques to find the decorated causes avoiding marked
states. Also, it would be interesting to move from automata back to labeled
transition systems but remaining into a trace setting, with hazard specified as
LTL-properties.

Finally, we briefly discussed extensions of our work to KAT and NetKAT
automata. Clearly, more work needs to be done here, both to precisely set the
definitions and to show the applicability of the method to, for example, find
causes of a hazard in a software defined network.

Acknowledgments. The work of Georgiana Caltais and Hiinkar Can Tung was sup-
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