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Execution
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- Effective method for finding concurrency bugs
- Widely adopted (e.g., ThreadSanitizer, Helgrind)
- Traditional techniques:
— Analyze the current execution
- Predictive techniques:
— Analyze the current execution + infer alternates
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Contributions

- We study the problem of dynamic deadlock prediction
- Main results:

- Complexity characterization

— Tradeoff between efficiency and precision is unavoidable
- Novel algorithms

— Strike a good balance between efficiency and precision
- Empirical evaluation

— Outperform state-of-the-art techniques
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Dynamic Deadlock Prediction

State-of-the-art This work
- SeqCheck!: - Sync-Preserving Deadlocks:
- Sound but incomplete - Sound but incomplete
- High polynomial complexity - (Nearly) Linear time algorithm
— O(N*) — O(N)

. < Wrt. number of events
- Dirk?:

- Sound and complete
- Heavyweight SMT solving

‘Focus is on identifying real deadlocks!

1Yan Cai, Hao Yun, Jingiu Wang, Lei Qiao, Jens Palsberg. Sound and efficient concurrency bug prediction. ESEC/FSE’21
2Christian Gram Kalhauge, Jens Palsberg. Sound deadlock prediction. OOPSLA'18
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Two steps of predictive analysis:

— (D) Identify potential buggy events
(2) Check if the potential bug can be realized
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Potential Deadlocks

ty to
1 000
- Potential deadlocks: 2| acquire(fs)
. . 3| acquire(/>)
- Cyclic lock acquisition patterns 4| write(x)
/ 5| release(/>)
= b 6| release(f1)
- Not protected by a common lock 7
) 8 read(x)
< No such /3 o acquire(ls)
- Necessary but insufficient for an actual deadlock 10 acquire(/1)
. 11 release(/
— Control flow/data flow dependencies 12 rekaseg(lg
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Potential Deadlocks

- Our first result:
- Identifying potential deadlocks is intractable
— NP-hard

- Our solution:
- Abstraction that groups potential deadlocks
— Abstract lock graph



Abstract Lock Graph
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Predictive Analysis

Two steps of predictive analysis:

(D Identify potential buggy events v’
— (2) Check if the potential bug can be realized
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Predicting Deadlocks

- Our second result: (Given a potential deadlock)
- Sound and complete deadlock prediction is intractable
— NP-hard

- General solution:
- Consider a restricted problem setting to gain efficiency
— Look for a subset of deadlocks

- Challenge:
- Restrictions should satisfy the following two properties
— Enable efficient analysis
— Retain high precision
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Sync-Preserving Deadlocks

- Adapted from data races?
- Subset of deadlocks
— More conservative restrictions on the allowed reorderings

- Enables efficient analysis

Umang Mathur, Andreas Pavlogiannis, Mahesh Viswanathan. Optimal Prediction of Synchronization-Preserving
Races. POPL'21
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Sync-Preserving Deadlocks
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Sync-Preserving Deadlocks

ty to t3
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‘Order of acquire events on the same lock that occur in the witness are maintained ‘
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Interplay With Abstract Lock Graph
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— Naive approach: Exponential
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Interplay With Abstract Lock Graph
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Experimental Results - Offline

- Implemented Sync-preserving Offline

— Postmortem analysis
- Compared with SeqCheck and Dirk
- 48 benchmark traces
— Based on standard Java benchmark suites

‘ Dirk ‘ SeqCheck ‘ Sync-preserving Offline ‘
Total Deadlocks 35 40 40
Total Time | > 1000 minutes | 46 minutes 3 minutes

16



Experimental Results - Offline

- Implemented Sync-preserving Offline

— Postmortem analysis
- Compared with SeqCheck and Dirk
- 48 benchmark traces
— Based on standard Java benchmark suites

‘ Dirk ‘ SeqCheck ‘ Sync-preserving Offline ‘
Total Deadlocks 35 40 40
Total Time | > 1000 minutes | 46 minutes 3 minutes

- False negative analysis: Only one actual deadlock is missed!
— Based on the standard notion of valid reorderings
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Online Algorithm

- Online setting — On-the-fly analysis
- No predictive online method
- Non-predictive online techniques:
— Schedule fuzzing
- Our work:

— Prediction + schedule fuzzing
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Experimental Results - Online

- Implemented Sync-preserving Online
- Compared with DeadlockFuzzer
- 38 benchmarks

< Based on standard Java benchmark suites

’ ‘ DeadlockFuzzer ‘ Sync-preserving Online ‘

Total Deadlock Hits 2076 7633
Total Unique Deadlocks 42 49
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This work:

- Complexity characterization:

— Finding potential deadlocks is intractable
— Realizing potential deadlocks is intractable
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Conclusion

This work:

- Complexity characterization:

— Finding potential deadlocks is intractable
— Realizing potential deadlocks is intractable

- Sync-preserving deadlocks:

— Achieves efficiency and high precision
< Qutperforms state-of-the-art

Thank you!
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