Sound Dynamic Deadlock Prediction in Linear Time

Hiinkar Can Tung Umang Mathur

Andreas Pavlogiannis Mahesh Viswanathan

/v BBNUS T iiRNGE

AARHUS UNIVERSITY of Singapore URBANA-CHAMPAIGN

The Problem

The Problem

t >

1| acquire(41)

The Problem

t >

1| acquire(41)
2 acquire(/;)

The Problem

t >

1| acquire(41)

N

acquire(/;)
3| request(/z)

The Problem

t >

acquire(4)
acquire(/;)

request(/s)
request(¢1)

EENENCURN O

The Problem

t1 [%9)

acquire(4)
acquire(/;)

request(/s)
request(¢1)

B WO N R

(Resource) Deadlock!

Dynamic Analysis

Execution

4
Program roo o

- Effective method for finding concurrency bugs
- Widely adopted (e.g., ThreadSanitizer, Helgrind)

Dynamic Analysis

Execution

4
Program roo o

- Effective method for finding concurrency bugs
- Widely adopted (e.g., ThreadSanitizer, Helgrind)
- Traditional techniques:
— Analyze the current execution
- Predictive techniques:
— Analyze the current execution + infer alternates

Predictive Analysis

t to

acquire(41)
acquire(/>)
release(/>)
release(¢;)
acquire(/>)
acquire(41)
release(¢;)
release(/>)

O ~NOoO O W

Observed trace
No deadlock

Predictive Analysis

5] t2

1| acquire(4y)
2| acquire(/>) _ t1 t
3| release(/>) reordering re(l2)
4| release(¥1) > 2| acquire(t)acqmre 2
5 acquire(/>) 5 i !
6 acquire(41)
7 release(¢;)
8 release(/>)

Observed trace Reordered trace

No deadlock Deadlock!

Contributions

- We study the problem of dynamic deadlock prediction
- Main results:

- Complexity characterization

— Tradeoff between efficiency and precision is unavoidable
- Novel algorithms

— Strike a good balance between efficiency and precision
- Empirical evaluation

— Outperform state-of-the-art techniques

Dynamic Deadlock Prediction

State-of-the-art
- SeqCheck!:

- Sound but incomplete

- High polynomial complexity
— O(N)
- Dirk?:
- Sound and complete
- Heavyweight SMT solving

1Yan Cai, Hao Yun, Jingiu Wang, Lei Qiao, Jens Palsberg. Sound and efficient concurrency bug prediction. ESEC/FSE’21
2Christian Gram Kalhauge, Jens Palsberg. Sound deadlock prediction. OOPSLA'18

Dynamic Deadlock Prediction

State-of-the-art This work
- SeqCheck!: - Sync-Preserving Deadlocks:
- Sound but incomplete - Sound but incomplete
- High polynomial complexity - (Nearly) Linear time algorithm
— O(N*) — O(N)

. < Wrt. number of events
- Dirk?:

- Sound and complete
- Heavyweight SMT solving

1Yan Cai, Hao Yun, Jingiu Wang, Lei Qiao, Jens Palsberg. Sound and efficient concurrency bug prediction. ESEC/FSE’21
2Christian Gram Kalhauge, Jens Palsberg. Sound deadlock prediction. OOPSLA'18

Dynamic Deadlock Prediction

State-of-the-art This work
- SeqCheck!: - Sync-Preserving Deadlocks:
- Sound but incomplete - Sound but incomplete
- High polynomial complexity - (Nearly) Linear time algorithm
— O(N*) — O(N)

. < Wrt. number of events
- Dirk?:

- Sound and complete
- Heavyweight SMT solving

‘Focus is on identifying real deadlocks!

1Yan Cai, Hao Yun, Jingiu Wang, Lei Qiao, Jens Palsberg. Sound and efficient concurrency bug prediction. ESEC/FSE’21
2Christian Gram Kalhauge, Jens Palsberg. Sound deadlock prediction. OOPSLA'18

Predictive Analysis

Two steps of predictive analysis:

(D Identify potential buggy events
(2) Check if the potential bug can be realized

Predictive Analysis

Two steps of predictive analysis:

— (D) Identify potential buggy events
(2) Check if the potential bug can be realized

Potential Deadlocks

t1 tr
1 000
- Potential deadlocks: 2| acquire(fs)
. . 3| acquire(/>)
- Cyclic lock acquisition patterns 4
s f / 5| release(/>)
bl 6| release(f1)
7 . o
8
9 acqwre(2
10 acquire({1)
11 release(¢;)
12 release(()

[y
w

Potential Deadlocks

t1 tr
1| acquire(/3)
- Potential deadlocks: 2| acquire(f1)
. o 3| acquire(/>)
- Cyclic lock acquisition patterns 4
/ 5| release(/>)
= bl 6| release((1)
- Not protected by a common lock 7| release(/3)
) 8 acquire(/3)
— No such /3 5 ——
10 acquire({1)
11 release(¢;)
12 release(/>)
13 release(/3)

Potential Deadlocks

ty to
1 000
- Potential deadlocks: 2| acquire(fs)
. . 3| acquire(/>)
- Cyclic lock acquisition patterns 4| write(x)
/ 5| release(/>)
= b 6| release(f1)
- Not protected by a common lock 7
) 8 read(x)
< No such /3 o acquire(ls)
- Necessary but insufficient for an actual deadlock 10 acquire(/1)
. 11 release(/
— Control flow/data flow dependencies 12 rekaseg(lg
13

Potential Deadlocks

- Our first result:
- Identifying potential deadlocks is intractable
— NP-hard

Potential Deadlocks

- Our first result:
- Identifying potential deadlocks is intractable
— NP-hard

- Our solution:
- Abstraction that groups potential deadlocks
— Abstract lock graph

Abstract Lock Graph

t t t3
1| acquire(f1)
2| acquire(f2)
3| release(f>)
4| acquire(f2)
5| release(/>)
6 release(éi) t1, o, {61} tr, {1, {62, 13}
7 acquire(/3)
8 acquire(f2) <e27 e4> <e9>
9 acquire({1)
10 release(/1)
11 release(/>)
12 | {)))
13 st acquire((3) o 0, {%3} t3, (1, {/3} ts, {2, {gla k3}
14 uire(¢
15 22&.2&3 (es) (€14) (e15)
16 release(/>)
g :::::ngig ’ Thread, Lock, { Locks Held }, (Events) ‘

Observed trace Abstract Lock Graph

Abstract Lock Graph

t t t3

acquire(fy .
acquiregizg Potential deadlocks: <627 e9>, <6‘4_7 e9>
release(/5)
acquire({2)
release(/>)
release(/1) t1, o, {61} tr, {1, {62, 13}
acquire((3)
acquire(f2) <627 e4> <e9>

9 acquire(f1)
10 release(/1)
11 release((>
12 release(/s
13 acquire(/3)
14 acquire(f)
15 acquire({2)
)

)

3)

0 ~N O O A WN =

NPy

16 release(/
17 release((y
18 release(/

Observed trace Abstract Lock Graph

Predictive Analysis

Two steps of predictive analysis:

(D Identify potential buggy events v’
— (2) Check if the potential bug can be realized

10

Predicting Deadlocks

t1 tr

acquire({q)
write(x)
acquire(/»)
release(/>)
release(/)
acquire(/>)
read(x)
acquire(¥1)
release(¢1)
release(/>)

O ©W O ~NO O WD =

—_

Observed trace
No deadlock

| Potential deadlock — Real deadlock? 11

Predicting Deadlocks

—_

O ©W O ~NO O WD =

t1 tr

acquire(4y)
write(x)
acquire(/»)
release(/>)
release(/)
acquire(/>)
read(x)
acquire(¥1)
release(¢1)
release(/>)

reordering

Observed trace
No deadlock

A 4

g b~ wWw NN =

t tr

acquire(/)
acquire({y)
write(x)
read(x)

Witness trace
Deadlock!

| Potential deadlock — Real deadlock v/

Predicting Deadlocks

- Our second result: (Given a potential deadlock)
- Sound and complete deadlock prediction is intractable
— NP-hard

12

Predicting Deadlocks

- Our second result: (Given a potential deadlock)
- Sound and complete deadlock prediction is intractable
— NP-hard

- General solution:
- Consider a restricted problem setting to gain efficiency
— Look for a subset of deadlocks

12

Predicting Deadlocks

- Our second result: (Given a potential deadlock)
- Sound and complete deadlock prediction is intractable
— NP-hard

- General solution:
- Consider a restricted problem setting to gain efficiency
— Look for a subset of deadlocks

- Challenge:
- Restrictions should satisfy the following two properties
— Enable efficient analysis
— Retain high precision

12

Sync-Preserving Deadlocks

- Adapted from data races?
- Subset of deadlocks
— More conservative restrictions on the allowed reorderings

- Enables efficient analysis

Umang Mathur, Andreas Pavlogiannis, Mahesh Viswanathan. Optimal Prediction of Synchronization-Preserving
Races. POPL'21

13

Sync-Preserving Deadlocks

t1 tr t3

1| acquire(/>)

2| acquire(4;)

3| write(x)

4| release(f;)

5| release(/>)

6 acquire(f1)

7 read(x)

8 release(/;)

9 acquire(f1)
10 acquire(()
11 release(/>)
12 release(/1)

Observed trace

14

Sync-Preserving Deadlocks

t to t3
1| acquire(/>)
2| acquire(4;) t t ts
3| write(x) :
4

4| release(f;) 1| acquire(/>)

2
5| release(/>) :
6 acquire(f1) — ;
7 read(x)
8 release(/1) 2 cauire(t)
9 acquire(f1) ; qu 1
10 acquire((>)
11 release(/>)
12 release(/1)

Observed trace

14

Sync-Preserving Deadlocks

ty to t3
1| acquire(/>)
2| acquire(4;) t t ts
3| write(x) :
A
4| release(f;) ; acquire(/s)
5| release(/>) :
6 acquire(f1) — ;
7 read(x)
8 release(/1) 2 cauire(t)
9 acquire(f1) ; qu 1
10 acquire(/>)
11 release(/>)
12 release(/1)

Observed trace Sync-Preserving Deadlock

‘Order of acquire events on the same lock that occur in the witness are maintained ‘

14

Interplay With Abstract Lock Graph

o 5 5 t1, 42, {l1} ty, 01, {ls, (3} Potential deadlocks:
1| acquire(¢y) <e2v e4> <e9> <62, 69>; <6‘4, e9>
2| acquire({)
3| release((>)
4| acquire(ls)
5| release((>)
6| release(f1)

7 acquire((3)
8 acquire({2)
9 acquire({1)
10 release(()
11 release(()
12 release((3)
13 acquire((3)
14 acquire({1)
15 acquire({)
16 release((;)
17 release(/y)
18 release((3)

15

Interplay With Abstract Lock Graph

0N O U WN

t1

t

t3

acquire({y)
acquire(lz)
release(/>)
acquire(lz)
release(/>)
release((;)

acquire((3)
acquire({2)
acquire({1)
release(()
release(()
release((3)

acquire(/3
acquire({q
acquire({,
release((
release(/y
release((3

)
)
)
)
)
)

t1, 2, {£1}
<6‘2, e4>

to, 1, {l2, (3}
(eo)

- Number of checks per cycle:

— Naive approach: Exponential

Potential deadlocks:

<e27 69>; <e47 69>

— Sync-preserving deadlocks: Linear

15

Interplay With Abstract Lock Graph

0N O U WN

t t ts il 1
acquire({y) <e2v e4>
acquire(lz)
release(/>)
acquire(lz)
release(/>)
release((;)

acquire((3)

acquire({2)

acquire({1)

release(()

release(()

release((3)
acquire((3)
acquire({1)
acquire({)
release((;)
release(/y)
release((3)

to, 1, {l2, (3}
(€9)

- Number of checks per cycle:

— Naive approach: Exponential

- Time spent per check:

— All deadlocks: Exponential
— Sync-preserving deadlocks: Linear

Potential deadlocks:

(€2, €0), (€1, €9)

— Sync-preserving deadlocks: Linear

15

Interplay With Abstract Lock Graph

0N O U WN

t t ts il 1
acquire({y) <e2v e4>
acquire(lz)
release(/>)
acquire(lz)
release(/>)
release((;)

acquire((3)

acquire({2)

acquire({1)

release(()

release(()

release((3)
acquire((3)
acquire({1)
acquire({)
release((;)
release(/y)
release((3)

to, 1, {l2, (3}
(€9)

- Number of checks per cycle:

— Naive approach: Exponential
— Sync-preserving deadlocks: Linear

- Time spent per check:

— All deadlocks: Exponential
— Sync-preserving deadlocks: Linear

Potential deadlocks:

(€2, €0), (€1, €9)

\ Overall

Linear

15

Interplay With Abstract Lock Graph

" 5 5 t1, 02, {01} ty, 01, {ls, (3} Potential deadlocks:
acquire(! <6‘2, e4> <e9> <62, 69>7 <6‘4, e9>
acquire(¢

1)
2)
release(/>)
acquire(lz)
release(/>)
1)

(¢ - Number of checks per cycle:
release(!

0N O U WN

acquire(/s — Naive approach: Exponential

)
acq“"e([’é; < Sync-preserving deadlocks: Linear

9 acquire(ly
10 release((1) \
11 release((2) - Time spent per check: Overall

12 release((3)

13 acquire((s) — All deadlocks: Exponential Hlirez1s
14 acquire({1) . .

15 acquire(() — Sync-preserving deadlocks: Linear

16 release((;)

17 release(/y)

18 release((3)

How much precision have we lost?

15

Experimental Results - Offline

- Implemented Sync-preserving Offline

— Postmortem analysis
- Compared with SeqCheck and Dirk
- 48 benchmark traces
— Based on standard Java benchmark suites

‘ Dirk ‘ SeqCheck ‘ Sync-preserving Offline ‘
Total Deadlocks 35 40 40
Total Time | > 1000 minutes | 46 minutes 3 minutes

16

Experimental Results - Offline

- Implemented Sync-preserving Offline

— Postmortem analysis
- Compared with SeqCheck and Dirk
- 48 benchmark traces
— Based on standard Java benchmark suites

‘ Dirk ‘ SeqCheck ‘ Sync-preserving Offline ‘
Total Deadlocks 35 40 40
Total Time | > 1000 minutes | 46 minutes 3 minutes

- False negative analysis: Only one actual deadlock is missed!
— Based on the standard notion of valid reorderings

16

Online Algorithm

- Online setting — On-the-fly analysis
- No predictive online method
- Non-predictive online techniques:
— Schedule fuzzing
- Our work:

— Prediction + schedule fuzzing

17

Experimental Results - Online

- Implemented Sync-preserving Online
- Compared with DeadlockFuzzer
- 38 benchmarks

< Based on standard Java benchmark suites

’ ‘ DeadlockFuzzer ‘ Sync-preserving Online ‘

Total Deadlock Hits 2076 7633
Total Unique Deadlocks 42 49

18

Conclusion

This work:

- Complexity characterization:

— Finding potential deadlocks is intractable
— Realizing potential deadlocks is intractable

19

Conclusion

This work:

- Complexity characterization:

— Finding potential deadlocks is intractable
— Realizing potential deadlocks is intractable

- Sync-preserving deadlocks:

— Achieves efficiency and high precision
< Qutperforms state-of-the-art

19

Conclusion

This work:

- Complexity characterization:

— Finding potential deadlocks is intractable
— Realizing potential deadlocks is intractable

- Sync-preserving deadlocks:

— Achieves efficiency and high precision
< Qutperforms state-of-the-art

Thank you!

19

