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Overview

Reads-From consistency checking:

Input: Partial execution X in a memory model M
Task: Check if X can be consistent in M
Practical applications:

— Model checking, testing

Well understood for traditional memory models

— Sequential consistency, x86-TSO

Little is known about the variants of C11 memory model
— This work fills this gap!



Contributions

- We study reads-from consistency checking in various variants of C11
- Main results:

- Efficient algorithms
— Optimal or nearly-optimal
- Complexity characterization

< Fine-grained optimality or A/P-hardness results
- Empirical evaluation

— Shows the impact of new algorithms in practice



C11 Memory Model
- Introduced by the ISO C/C++ 2011 standards E E



C11 Memory Model

- Introduced by the ISO C/C++ 2011 standards

- Support for low-level atomic operations e @
<+ Load, Store, RMW

< Used for communication between threads



C11 Memory Model

- Introduced by the ISO C/C++ 2011 standards

- Support for low-level atomic operations e @
<+ Load, Store, RMW
— Used for communication between threads

- Memory accesses levels:

— Synchronization guarantees Sequentially consistent

— Implementation cost /N
Release ~ Acquire

atomic<int> x (0); N

x.store(1l, memory_ order _relaxed); Relaxed

x.load (memory_order_acquire) ;



C11 Memory Model

- Semantics of a program is defined as a set of consistent executions
- Each execution is a graph

— Nodes are instructions in the program

— Edges represent certain relations among the instructions

Thread 1 Thread 2 Thread 1 Thread 2
x:=0; y =0 W(x,0) W(y,0)
a = x; b:=y; | J
y =1 x:=1; R(x,l)“ o R(y,1)
bl
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C11 Memory Model

- Standard relations:
— Program order (po): Precedence among the same thread events

Thread 1  Thread 2 Thread 1 Thread 2
x:=0; y =0 W(x,0) W(y,0)
a:=x; b=y, Po| P
y =1 x =1 R(x,7?) R(y,?)

po| po|

W(y,1) W(x,1)



C11 Memory Model

- Standard relations:
— Program order (po): Precedence among the same thread events
— Reads-from (rf): Relates the writes to the loads which read their value
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C11 Memory Model

- Standard relations:
— Program order (po): Precedence among the same thread events
— Reads-from (rf): Relates the writes to the loads which read their value
— Modification order (mo): A total order of the writes on a given location

Thread 1 Thread 2 Thread 1 Thread 2
x=0,  y=0, W(x,0) W(y,0)
a:i=x b=y, l !

y =1; x :=1; R(x,?) "‘.'-'"‘:. R(y,7)
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- A memory model restricts which executions are consistent
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C11-Style Memory Models

- A memory model restricts which executions are consistent

W(X, 0) w()’a 0)

g o..
pOl ~Zo f?""pOl
R(x,1) Jf & YR()/, 1) — Consistent in M1 v
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Wy,1)" “Tw(x, 1)
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Reads-From Consistency Checking

- Input: A partial execution X in a memory model M
— X contains po and rf
— X lacks mo

- Task: Check if X can be extended to a complete execution consistent in M
— Find an mo that turns X consistent
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RC20 Memory Model

- Captures a rich fragment of C11

— Contains Release, Acquire and Relaxed accesses
— Lacks Sequentially Consistent accesses

- Reads-from consistency checking is a bottleneck
- Previous works: O(n® - k), O(n?- k)

— For n events and k threads
- Our result: O(n- k)

— Key idea: minimal coherence witness relation
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Witness Relation

Witness relation
— Serves as a witness for consistency
— Construct a partially ordered mo

— Include necessary orderings enforced by the memory model
— It should be extendable to a total mo

Reads-from consistency checking:

1
1
Recall — | < Task is to find an mo
! < mo is a total order on the same location writes

_________________________________________________
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Witness Relation

- W(x) must be mo ordered before W;(x)

- W3(x) is not relevant
— It can be left unordered

- Witness should always be extendable to a total mo
< Ws(x) —=> Wa(x)
< Wi(x) —o=s Wa(x)

11



Minimal Coherence for RC20

Minimal coherence

— Serves as a witness for consistency
— Weaker than prior witness relations
— Allows efficient consistency checking algorithm for RC20

12



Minimal Coherence for RC20

Minimal coherence Prior witness relations
W(x) W(x)

rfi ¢ rfi ¢
RMW(x) - -+ > R(x) . N0 RMW(x) - -~ R(x) . W)
i e d o et

RMW(x)  RMW(x) RMW(x)  RMW(x)

13
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Minimal coherence

W(x) mo

1
RMW(x) - -->R(x)

rfi l po
RMW(x)  RMW(x)

Prior witness relations
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Minimal coherence Prior witness relations
W(x) mo W(x)
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Minimal Coherence for RC20

Minimal coherence Prior witness relations
W(x) mo W(x)
rf, . rf -------- N rf, "
RMW(x) - -->R(x) ; W(x) RMW(x) - -- > R(x) ; W(x)
rfi l POL}// rfi l POL}// A
RMW(x)  RMW(x) RMW(x) > RMW(x)
............... ((\O

- Minimal coherence is weaker!

— More efficient to compute
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Experimental Results

- Focused on the RC20/Release-Acquire (RA) fragments
— RA is a fragment of RC20

- Performed an evaluation in two scenarios

— Model checking
— Testing

- Modified only the consistency checking components

14



Experimental Results - Model Checking

- Implemented minimal coherence inside GenMC!
- Compared with the original GenMC

— 25 standard benchmarks
< 2 hour timeout

GenMC Our Algorithm

Average time per execution 14.5 sec 0.26 sec
Total number of executions ~ 356K 4.6M

Michalis Kokologiannakis, Viktor Vafeiadis. GenMC: A Model Checker for Weak Memory Models. CAV'21
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Experimental Results - Testing

- Implemented minimal coherence inside C11Tester!
< Online version

— O(n - k) bound does not apply
- Compared with the original C11Tester
— 32 standard benchmarks

Cl1Tester Our Algorithm
Total analysis time 286 sec 170 sec

"Weiyu Luo, Brian Demsky. Cl1Tester: a race detector for C/C++ atomics. ASPLOS'21
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Summary of Established Bounds

- NP-hard: O(k - n*1) n — number of events
— Strong Release-Acquire (SRA) k — number of threads
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Summary of Established Bounds

- NP-hard: O(k - n*1) n — number of events
— Strong Release-Acquire (SRA) k — number of threads
- Super-linear: O(n - k)
— RC20

— Weak Release-Acquire (WRA)
— RMW-free SRA

- Linear: O(n)
— Relaxed

- Super-linear lower bound:
— RMW-free RA, SRA, WRA
— Improving O(n - k) bounds would be non-trivial
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Conclusion

- Addressed the reads-from consistency checking problem in variants of C11
- Collection of optimal or nearly-optimal algorithms for different variants
- Established fine-grained complexity results

- Experimental evaluation confirms the impact of the new algorithms
Thank you!
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