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Concurrency: Software and Challenges

� Concurrency is everywhere

� Concurrency bugs are also everywhere

↪→ Data races

↪→ Deadlocks

↪→ Atomicity violations

↪→ ...
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Dynamic Analyses for Detecting Concurrency Bugs

-- <> --

-- <> --

Program

Execution

Bug Found

Not Found

� Popular approach for finding concurrency bugs

� Widely adopted (e.g., ThreadSanitizer, Helgrind)

� Performance is crucial
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Overview

-- <> --

-- <> --

-- <> --

Data Structure Analysis

Analysis is slow

-- <> --

-- <> --

-- <> --

CSSTs Analysis

Analysis is fast
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Partial Orders in Dynamic Analyses

Thread 0

write(x)

write(y)

Thread 1

write(x)

. . .

write(y)

Thread 2

read(y)

. . .

write(x)

� Analyses require establishing a causal ordering among the events

� Causality is typically represented as a partial order
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Partial Orders in Dynamic Analyses
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� Partial orders are essential for dynamic analyses

↪→ Continuously queried and refined

↪→ Plays a critical role in the overall performance
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Maintaining Partial Orders in Dynamic Analysis

Insert Query Delete

Vector Clocks O(n) O(1) 7 n : number of events

CSSTs O(log n) O(log n) O(log n)

Can we do better?
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Dynamic Reachability

� Input: (i) Chain DAG

(ii) Online sequence of operations

◦ Update:
↪→ insertEdge(e1, e2)
↪→ deleteEdge(e1, e2)

◦ Query:
↪→ reachable(e1, e2)
↪→ successor(e1, t)
↪→ predecessor(e1, t)

� Task: Answer queries correctly

↪→ Considering all prior updates

Chain t0
〈0, 0〉

〈0, 1〉

〈0, 2〉

〈0, 3〉

Chain t1
〈1, 0〉

〈1, 1〉

〈1, 2〉

〈1, 3〉
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Dynamic Suffix Minima

� Can formulate dynamic reachability

� Input: (i) Integer array A

(ii) Online sequence of operations

◦ Update:

↪→ update(A, i , a)

◦ Query:

↪→ min(A, i)

↪→ argleq(A, a)

� Task: Answer queries correctly

↪→ Considering all prior updates

A : 6

0

9

1

8

2

10

3

↓

min(A, 1) = 8
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Segment Trees

� Classic data structure

� Solves dynamic suffix minima problem efficiently

↪→ O(log n) per query and update

nd0,3: 6

nd0,1: 6

nd0,0: 6 nd1,1: 9

nd2,3: 8

nd2,2: 8 nd3,3: 10

A = [6, 9, 8, 10]
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Dynamic Suffix Minima

� Formulation of dynamic reachability

↪→ At1
t0 represents reachability information from t0 to t1

↪→ The collection (At1
t0 , A

t0
t1 , . . .) represents global reachability information

Chain t0
〈0, 0〉

〈0, 1〉

〈0, 2〉

〈0, 3〉

Chain t1
〈1, 0〉

〈1, 1〉

〈1, 2〉

〈1, 3〉

At1
t0 : 0

0

∞
1

3

2

2

3

At0
t1 : 1
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∞
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∞
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∞
3
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Dynamic Suffix Minima

� Formulation of dynamic reachability

◦ update(A, i , a) handles

↪→ insertEdge(e1, e2)

↪→ deleteEdge(e1, e2)

◦ min(A, i) handles

↪→ reachable(e1, e2)

↪→ successor(e1, t)

◦ argleq(A, a) handles

↪→ predecessor(e1, t)
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Dynamic Reachability with Segment Trees

� Query: O(log n)

� Insert edge: O(k2 log n)

↪→ Transitive closure

Chain t0

〈0, 0〉

〈0, 1〉

〈0, 2〉

Chain t1

〈1, 0〉

〈1, 1〉

〈1, 2〉

Chain t2

〈2, 0〉

〈2, 1〉

〈2, 2〉

Chain t3

〈3, 0〉

〈3, 1〉

〈3, 2〉

(update(At3t0 , 1, 2))

Earliest predecessor
(argleq(At1t0 , 1))

Latest successor
(min(At3t2 , 0))
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Sparse Segment Trees

� Key observation: Arrays At′
t are typically sparse

� Improved complexity: O(min(log n, d))

↪→ By exploiting sparsity

↪→ d is the maximum number of nodes in a chain that have an outgoing edge

� Sparsity is maintained in transitive closure
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nd0,7: 42

nd0,3: 59

nd2,2: 65
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Experimental Results

Data Races
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Scalability Experiments
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Conclusion

CSSTs (Collective Sparse Segment Trees)

� Drop-in replacement of existing data structures

� Offers complexity improvements in complex dynamic analyses

� Experimental results confirm the practical impact

Thank you!

GitHub: @hcantunc/cssts
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Appendix
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Streaming vs. Non-Streaming Dynamic Analyses

Streaming Analyses

� No propagation

� Vector clocks are efficient

↪→ Maintain the partial order in O(kn)

Non-Streaming Analyses

� Requires propagation

� Vector clocks are inefficient

↪→ Maintain the partial order in O(kn2)

n : number of events

↪→ Very large in practice

k : number of threads
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