CSSTs: A Dynamic Data Structure for Partial Orders in Concurrent Execution Analysis

Hünkar Can Tunç

Constantin Enea

Ameya Deshmukh Andreas Pavlogiannis Berk Çirişci

- Concurrency is everywhere
- Concurrency bugs are also everywhere
 - $\hookrightarrow \mathsf{Data} \ \mathsf{races}$
 - $\, \hookrightarrow \, \mathsf{Deadlocks}$

 \hookrightarrow ...

 $\hookrightarrow {\sf Atomicity\ violations}$

Dynamic Analyses for Detecting Concurrency Bugs

- Popular approach for finding concurrency bugs
- Widely adopted (e.g., ThreadSanitizer, Helgrind)
- Performance is crucial

Overview

Analysis is **slow**

Analysis is **fast**

- Analyses require establishing a causal ordering among the events
- Causality is typically represented as a partial order

- Partial orders are essential for dynamic analyses
 - $\,\hookrightarrow\,$ Continuously queried and refined
 - $\,\hookrightarrow\,$ Plays a critical role in the overall performance

Maintaining Partial Orders in Dynamic Analysis

Maintaining Partial Orders in Dynamic Analysis

Can we do better?

Maintaining Partial Orders in Dynamic Analysis

	Insert	Query	Delete	
Vector Clocks	O(n)	O(1)	×	<i>n</i> : number of events
CSSTs	$O(\log n)$	$O(\log n)$	$O(\log n)$	

- Input: (i) Chain DAG
 - (ii) Online sequence of operations

• Update:

- $\hookrightarrow \text{insertEdge}(e_1, e_2)$
- \hookrightarrow deleteEdge (e_1, e_2)

$\circ~$ Query:

- \hookrightarrow reachable (e_1, e_2) \hookrightarrow successor (e_1, t) \hookrightarrow predecessor (e_1, t)
- Task: Answer queries correctly
 - $\,\hookrightarrow\,$ Considering all prior updates

- Can formulate dynamic reachability
- Input: (i) Integer array A
 - (ii) Online sequence of operations \circ **Update:** \hookrightarrow update(A, *i*, *a*) \circ **Query:** \hookrightarrow min(A, *i*) \hookrightarrow argleq(A, *a*)
- Task: Answer queries correctly

 \hookrightarrow Considering all prior updates

- Can formulate dynamic reachability
- Input: (i) Integer array A
 - (ii) Online sequence of operations \circ **Update:** \hookrightarrow update(A, *i*, *a*) \circ **Query:** \hookrightarrow min(A, *i*) \hookrightarrow argleq(A, *a*)
- Task: Answer queries correctly

 \hookrightarrow Considering all prior updates

- Classic data structure
- Solves dynamic suffix minima problem efficiently
 - $\hookrightarrow O(\log n)$ per query and update

$$A = [6, 9, 8, 10]$$

- Formulation of dynamic reachability
 - $\hookrightarrow A_{t_0}^{t_1}$ represents reachability information from t_0 to t_1
 - \hookrightarrow The collection ($A_{t_0}^{t_1}, A_{t_1}^{t_0}, \ldots$) represents global reachability information

- Formulation of dynamic reachability
 - $\hookrightarrow A_{t_0}^{t_1}$ represents reachability information from t_0 to t_1
 - \hookrightarrow The collection ($A_{t_0}^{t_1}, A_{t_1}^{t_0}, \ldots$) represents global reachability information

- Formulation of dynamic reachability
 - \circ update(A, *i*, *a*) handles
 - \hookrightarrow insertEdge(e_1, e_2)
 - $\hookrightarrow \texttt{deleteEdge}(\mathit{e}_1, \mathit{e}_2)$
 - o min(A, i) handles
 - \hookrightarrow reachable (e_1, e_2)
 - $\hookrightarrow \texttt{successor}(e_1, t)$
 - $\circ argleq(A, a)$ handles
 - $\hookrightarrow \texttt{predecessor}(e_1, t)$

- Formulation of dynamic reachability
 - update(A, *i*, *a*) handles ↔ insertEdge(e_1, e_2) ↔ deleteEdge(e_1, e_2)
 - o min(A, i) handles
 - \hookrightarrow reachable(e_1, e_2)
 - \hookrightarrow successor(e_1, t)
 - \circ argleq(A, *a*) handles
 - \hookrightarrow predecessor(e_1, t)

 $ext{successor}(\langle 0,1
angle,t_1)= ext{min}(extsf{A}_{t_0}^{t_1},1)$

- **Query:** $O(\log n)$
- Insert edge: $O(k^2 \log n)$
 - $\hookrightarrow \mathsf{Transitive}\ \mathsf{closure}$

- **Query:** $O(\log n)$
- Insert edge: $O(k^2 \log n)$

 $\hookrightarrow \mathsf{Transitive}\ \mathsf{closure}$

- **Query:** $O(\log n)$
- Insert edge: $O(k^2 \log n)$

 $\, \hookrightarrow \, {\sf Transitive} \, \, {\sf closure}$

- **Query:** $O(\log n)$
- Insert edge: $O(k^2 \log n)$

 $\hookrightarrow \mathsf{Transitive}\ \mathsf{closure}$

Sparse Segment Trees

- Key observation: Arrays $A_t^{t'}$ are typically sparse
- Improved complexity: $O(min(\log n, d))$
 - $\hookrightarrow \mathsf{By} \text{ exploiting sparsity}$
 - $\, \hookrightarrow \, d$ is the maximum number of nodes in a chain that have an outgoing edge
- Sparsity is maintained in transitive closure

Experimental Results

CSSTs (Collective Sparse Segment Trees)

CSSTs (Collective Sparse Segment Trees)

• Drop-in replacement of existing data structures

CSSTs (Collective Sparse Segment Trees)

- Drop-in replacement of existing data structures
- Offers complexity improvements in complex dynamic analyses

CSSTs (Collective Sparse Segment Trees)

- Drop-in replacement of existing data structures
- Offers complexity improvements in complex dynamic analyses
- Experimental results confirm the practical impact

CSSTs (Collective Sparse Segment Trees)

- Drop-in replacement of existing data structures
- Offers complexity improvements in complex dynamic analyses
- Experimental results confirm the practical impact

Thank you!

GitHub: @hcantunc/cssts

Appendix

Streaming vs. Non-Streaming Dynamic Analyses

Streaming Analyses

- No propagation
- Vector clocks are efficient
 - \hookrightarrow Maintain the partial order in O(kn)
- *n*: number of events
 - \hookrightarrow Very large in practice
- k: number of threads

Non-Streaming Analyses

- Requires propagation
- Vector clocks are **inefficient**
 - \hookrightarrow Maintain the partial order in $O(kn^2)$