CSSTs: A Dynamic Data Structure for Partial Orders in
Concurrent Execution Analysis

Hiinkar Can Tunc Ameya Deshmukh Berk Cirisci

Constantin Enea Andreas Pavlogiannis

/v

AARHUS UNIVERSITY 1T OMBAY

@S, INSTITUT
,{'Cs POLYTECHNIQUE
’ DE PARIS

dWs

EcoLe
POLYTECHNIQUE

Concurrency: Software and Challenges

e Concurrency is everywhere # rPacHE gg am kL A
MacOs AN330I3|jux

e Concurrency bugs are also everywhere
1

£
Spark
< Data races TensorFlow

— Deadlocks
— Atomicity violations

Dynamic Analyses for Detecting Concurrency Bugs

e Popular approach for finding concurrency bugs
e Widely adopted (e.g., ThreadSanitizer, Helgrind)

e Performance is crucial

Overview

~

| Data Structure |

Analysis

Analysis is slow

(CssTs) [(Analyiy)

Analysis is fast

Partial Orders in Dynamic Analyses

Thread 0 Thread 1 Thread 2
write(x) write(x) read(y)

write(y) L .
l l

write(y) write(x)

e Analyses require establishing a causal ordering among the events

e Causality is typically represented as a partial order

Partial Orders in Dynamic Analyses

Thread 0 Thread 1 Thread 2

write(x) write(x) read(y)

: 1 1

write(y)
l l

read(x) write(y) write(x)

Partial Orders in Dynamic Analyses

Thread 0 Thread 1 Thread 2

writle(x) write(x) read(y)

write(y) l l
ol l l

read(x) write(y) write(x)

Partial Orders in Dynamic Analyses

Thread 0 Thread 1 Thread 2

write(x) write(x) read(y)

read(x) write(y) write(x)

Partial Orders in Dynamic Analyses

Thread 0 Thread 1 Thread 2

write(x) ———— write(x) read(y)

read(x) write(y) write(x)

Partial Orders in Dynamic Analyses

Thread 0 Thread 1 Thread 2

— 5 Easy write(x) ———— write(x) read(y)

9, Difficult writle(yz% l / l
ol | |

read(x) write(y) write(x)

Partial Orders in Dynamic Analyses

= Easy

—> Difficult

Thread 0 Thread 1

write(x) ———— write(x)

Thread 2
read(y)

!
write(y))
oL

read(x)

Partial Orders in Dynamic Analyses

Thread 0 Thread 1 Thread 2

— 5 Easy write(x) ———— write(x) read(y)

——— Difficult write(y) 2

oL

read(x) write(y) write(x)

Partial Orders in Dynamic Analyses

Thread 0 Thread 1 Thread 2
— 5 Easy write(x)
-_— DIfFICUlt write(y)

o

read(x)

Partial Orders in Dynamic Analyses

Thread 0 Thread 1 Thread 2
— 5 Easy write(x)
-_— DIfFICUlt write(y)

o

read(x)

Partial Orders in Dynamic Analyses

Thread 0 Thread 1 Thread 2
— 5 Easy write(x)
-_— DIfFICUlt write(y)

o

read(x)

Partial Orders in Dynamic Analyses

Thread 0 Thread 1 Thread 2

— 5 Easy write(x)

l

write(y)

oL

read(x)

—> Difficult

e Partial orders are essential for dynamic analyses

— Continuously queried and refined

— Plays a critical role in the overall performance

Maintaining Partial Orders in Dynamic Analysis

Insert Query Delete

Vector Clocks O(n) 0(1) X n: number of events

Maintaining Partial Orders in Dynamic Analysis

Insert Query Delete

Vector Clocks O(n) 0(1) X n: number of events

Can we do better?

Maintaining Partial Orders in Dynamic Analysis

Insert Query Delete

Vector Clocks O(n) 0(1) X n: number of events

CSSTs O(logn) O(log n) O(log n)

Dynamic Reachability

e Input: (i) Chain DAG

(ii) Online sequence of operations Chain t, Chain t;

o Update: (0,0) —— (1,0)
— insertEdge(e;,) I
— deleteEdge(e, &) (0,1) (1,1)

o Query: | l
— reachable(ey, &) (0,2) (1,2)
< successor(ey, t) ! |
— predecessor(er, t) (0, 3) (1,3)

e Task: Answer queries correctly

— Considering all prior updates

Dynamic Suffix Minima

e Can formulate dynamic reachability
e Input: (i) Integer array A

(ii) Online sequence of operations

o Update: A: |6|9]|8]10
— update(A,/, a) 0 1 23
o Query:
— min(A,)

— argleq(4, a)

e Task: Answer queries correctly

— Considering all prior updates

Dynamic Suffix Minima

e Can formulate dynamic reachability

e Input: (i) Integer array A

(ii) Online sequence of operations !
o Update: A: [6]19]8]10
— update(A,/, a) 0 1 23
o Query:
— min(A,) min(A,1) =8

— argleq(4, a)

e Task: Answer queries correctly

— Considering all prior updates

Segment Trees

e Classic data structure
e Solves dynamic suffix minima problem efficiently

— O(log n) per query and update

[Ild()’(): 6] [Ild171: 9] [nd272: 8] [Ild3,3: 10]

A=16,9,8,10]

Dynamic Suffix Minima

e Formulation of dynamic reachability

— A} represents reachability information from to to t;

< The collection (Ag, A?, ...) represents global reachability information

Chain tg Chain t;

<010>7 <1lo> A% 10| 3

0.1) (1.1) 0O 1 2 3
| | t

(0,2) (1,2) AP] 1]o0|oo|o0
| l 01 2 3

(0,3) (1,3)

10

Dynamic Suffix Minima

e Formulation of dynamic reachability

— A} represents reachability information from to to t;

< The collection (Ag, A?, ...) represents global reachability information

Chain tg Chain t;

Al 3

10

Dynamic Suffix Minima

. . - Chain tg Chain t;
e Formulation of dynamic reachability

(0,0) —— (1,0)

o update(A,i,a) handles <0l1> — <1l1>
— insertEdge(e;, &) 1 1

— deleteEdge(er, &) (0,2) (1,2)

o) IIlj.].’l(A7 I) handles <07l3> <17i3>

— reachable(e;, &)

— successor(ey, t)
o argleq(A, a) handles
— predecessor(er, t)

11

Dynamic Suffix Minima

Chain tg Chain t;
(0,0) —— (1,0)
7
(0,1) (1,1)
| |
(0,2) (1,2)

o min(A, /) handles <07l3> <1,i3)

e Formulation of dynamic reachability

0,1),t;) =min(A7, 1
— successor(ei, t) successor((0,1), 1) = min(Ay, 1)

Al 0ol 3]2
01 2 3

11

Dynamic Reachability with Segment Trees

e Query: O(logn)

e Insert edge: O(k?logn)
— Transitive closure

Chain tg Chain t; Chain to Chain t3
(0,0) (1,0) (2,0) (3,0

v T |
(0,1) (1,1) (2, 1)\\<3, 1)
i \ ¥ v

(0,2) (1,2) (2,2) (3,2)

12

Dynamic Reachability with Segment Trees

e Query: O(log n)

e Insert edge: O(k?logn)
— Transitive closure

Chain tg Chain t; Chain to Chain t3
(0,0) (1,0) (2,0) (3,0

A '
Earliest predecessor - (0, 1) (1,1) (2,1) (3,1)

(argleq(Az, 1)) { J I y
(0,2) (1,2) (2,2) (3,2)

12

Dynamic Reachability with Segment Trees

e Query: O(log n)

e Insert edge: O(k?logn)
— Transitive closure

Chain tg Chain t; Chain to Chain t3
(0,0) (1,0) (2,0) (3,0

e '
Earliest predecessor - (0, 1) (1,1) (2,1) (3,1)

(argleq(Az, 1)) | I v '
(0,2) (1,2) (2,2) (3,2) < Latest successor
(min(Ag, 0))

12

Dynamic Reachability with Segment Trees

e Query: O(log n)

e Insert edge: O(k?logn)
— Transitive closure

Chain tg Chain t; Chain to Chain t3
(0,0) (1,0) (2,0) (3,0

A '
Earliest predecessor - (0, 1) (1,1) (2,1) (3,1)

(argleq(Az, 1)) U v v '
(0,2) . (1,2) (2,2) (3.2) < Latest successor
b 7 (min(AZ,0))

(update(Ag, 1,2))

12

Sparse Segment Trees

o Key observation: Arrays A are typically sparse
e Improved complexity: O(min(log n, d))
— By exploiting sparsity
— d is the maximum number of nodes in a chain that have an outgoing edge

e Sparsity is maintained in transitive closure

59 |00 | 65| 00| 00|00 |00 |42
0 1 2 3 4 5 6

13

Experimental Results

Speedup

oN

0.5

_
es ks S . C _free es . e
pata R¥ peadio® MemoY bugj sO cOY\S‘c")bege}':ﬁ"er ﬂc,n dat? Yac_’mea\'\lab‘\\ d
~ ~v 7 %—/
Insert Insert+Delete

[Vector Clocks

[Segment Trees

[Graphs

14

Scalability Experiments

10-2 Insertion 10-6 Query
1 1.251
5,
S seanes
= 1} 2075
£ 2
F os5) = 051
0.25F
0—0—6—0—6—0%=0=¢=0=¢—'104 0 | | | | | -]_04
4 5) 7 8 4 5 6 7 8
n n

—e— CSSTs-—= Vector Clocks

15

Conclusion

CSSTs (Collective Sparse Segment Trees)

16

Conclusion

CSSTs (Collective Sparse Segment Trees)

e Drop-in replacement of existing data structures

16

Conclusion

CSSTs (Collective Sparse Segment Trees)

e Drop-in replacement of existing data structures

e Offers complexity improvements in complex dynamic analyses

16

Conclusion

CSSTs (Collective Sparse Segment Trees)

e Drop-in replacement of existing data structures
e Offers complexity improvements in complex dynamic analyses

e Experimental results confirm the practical impact

16

Conclusion

CSSTs (Collective Sparse Segment Trees)

e Drop-in replacement of existing data structures
e Offers complexity improvements in complex dynamic analyses

e Experimental results confirm the practical impact

Thank you!

GitHub: ©hcantunc/cssts

16

Appendix

17

Streaming vs. Non-Streaming Dynamic Analyses

Streaming Analyses Non-Streaming Analyses
e No propagation e Requires propagation
e Vector clocks are efficient e Vector clocks are inefficient
< Maintain the partial order in O(kn) < Maintain the partial order in O(kn?)

n: number of events
— Very large in practice
k: number of threads

18

