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Concurrency: Software and Challenges

e Concurrency is everywhere # rPacHE gg am kL A
MacOs AN330I3|jux

e Concurrency bugs are also everywhere
1
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< Data races TensorFlow

— Deadlocks
— Atomicity violations



Dynamic Analyses for Detecting Concurrency Bugs

e Popular approach for finding concurrency bugs
e Widely adopted (e.g., ThreadSanitizer, Helgrind)

e Performance is crucial



Overview
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Partial Orders in Dynamic Analyses

Thread 0 Thread 1 Thread 2
write(x) write(x) read(y)

write(y) L .
l l
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e Analyses require establishing a causal ordering among the events

e Causality is typically represented as a partial order
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Partial Orders in Dynamic Analyses

Thread 0 Thread 1 Thread 2
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e Partial orders are essential for dynamic analyses

— Continuously queried and refined

— Plays a critical role in the overall performance



Maintaining Partial Orders in Dynamic Analysis

Insert Query Delete

Vector Clocks  O(n) 0(1) X n: number of events



Maintaining Partial Orders in Dynamic Analysis

Insert Query Delete

Vector Clocks  O(n) 0(1) X n: number of events

Can we do better?



Maintaining Partial Orders in Dynamic Analysis

Insert Query Delete

Vector Clocks  O(n) 0(1) X n: number of events

CSSTs O(logn) O(log n) O(log n)



Dynamic Reachability

e Input: (i) Chain DAG

(ii) Online sequence of operations Chain t,  Chain t;

o Update: (0,0) —— (1,0)
— insertEdge(e;, ) I
— deleteEdge(e, &) (0,1) (1,1)

o Query: | l
— reachable(ey, &) (0,2) (1,2)
< successor(ey, t) ! |
— predecessor(er, t) (0, 3) (1,3)

e Task: Answer queries correctly

— Considering all prior updates



Dynamic Suffix Minima

e Can formulate dynamic reachability
e Input: (i) Integer array A

(ii) Online sequence of operations

o Update: A: |6|9]|8]10
— update(A,/, a) 0 1 23
o Query:
— min(A, )

— argleq(4, a)

e Task: Answer queries correctly

— Considering all prior updates



Dynamic Suffix Minima

e Can formulate dynamic reachability

e Input: (i) Integer array A

(ii) Online sequence of operations !
o Update: A: [6]19]8]10
— update(A,/, a) 0 1 23
o Query:
— min(A, ) min(A,1) =8

— argleq(4, a)

e Task: Answer queries correctly

— Considering all prior updates



Segment Trees

e Classic data structure
e Solves dynamic suffix minima problem efficiently

— O(log n) per query and update

[ Ild()’(): 6 ] [ Ild171: 9 ] [ nd272: 8] [ Ild3,3: 10]

A=16,9,8,10]



Dynamic Suffix Minima

e Formulation of dynamic reachability

— A} represents reachability information from to to t;

< The collection (Ag, A?, ...) represents global reachability information

Chain tg  Chain t;

<010>7 <1lo> A% 10| 3

0.1) (1.1) 0O 1 2 3
| | t

(0,2) (1,2) AP ] 1]o0|oo|o0
| l 01 2 3

(0,3) (1,3)
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Dynamic Suffix Minima

e Formulation of dynamic reachability

— A} represents reachability information from to to t;

< The collection (Ag, A?, ...) represents global reachability information

Chain tg  Chain t;

Al 3
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Dynamic Suffix Minima

. . - Chain tg  Chain t;
e Formulation of dynamic reachability

(0,0) —— (1,0)

o update(A,i,a) handles <0l1> — <1l1>
— insertEdge(e;, &) 1 1

— deleteEdge(er, &) (0,2) (1,2)

o) IIlj.].’l(A7 I) handles <07l3> <17i3>

— reachable(e;, &)

— successor(ey, t)
o argleq(A, a) handles
— predecessor(er, t)
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Dynamic Suffix Minima

Chain tg  Chain t;
(0,0) —— (1,0)
7
(0,1) (1,1)
| |
(0,2) (1,2)

o min(A, /) handles <07l3> <1,i3)

e Formulation of dynamic reachability

0,1),t;) =min(A7, 1
— successor(ei, t) successor((0,1), 1) = min(Ay, 1)

Al 0ol 3]2
01 2 3
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Dynamic Reachability with Segment Trees

e Query: O(logn)

e Insert edge: O(k?logn)
— Transitive closure

Chain tg  Chain t; Chain to  Chain t3
(0,0) (1,0) (2,0) (3,0

v T |
(0,1) (1,1) (2, 1)\\<3, 1)
i \ ¥ v

(0,2) (1,2) (2,2) (3,2)
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Dynamic Reachability with Segment Trees

e Query: O(log n)

e Insert edge: O(k?logn)
— Transitive closure

Chain tg  Chain t; Chain to  Chain t3
(0,0) (1,0) (2,0) (3,0

A '
Earliest predecessor - (0, 1) (1,1) (2,1) (3,1)

(argleq(Az, 1)) U v v '
(0,2) . (1,2) (2,2) (3.2) < Latest successor
b 7 (min(AZ,0))

(update(Ag, 1,2))

12



Sparse Segment Trees

o Key observation: Arrays A are typically sparse
e Improved complexity: O(min(log n, d))
— By exploiting sparsity
— d is the maximum number of nodes in a chain that have an outgoing edge

e Sparsity is maintained in transitive closure

59 |00 | 65| 00| 00|00 |00 |42
0 1 2 3 4 5 6
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Experimental Results

Speedup
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Scalability Experiments
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Conclusion

CSSTs (Collective Sparse Segment Trees)
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Conclusion

CSSTs (Collective Sparse Segment Trees)

e Drop-in replacement of existing data structures
e Offers complexity improvements in complex dynamic analyses

e Experimental results confirm the practical impact

Thank you!

GitHub: ©hcantunc/cssts
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Appendix
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Streaming vs. Non-Streaming Dynamic Analyses

Streaming Analyses Non-Streaming Analyses
e No propagation e Requires propagation
e Vector clocks are efficient e Vector clocks are inefficient
< Maintain the partial order in O(kn) < Maintain the partial order in O(kn?)

n: number of events
— Very large in practice
k: number of threads
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