
A Tree Clock Data Structure for Causal Orderings

in Concurrent Executions

Umang Mathur Andreas Pavlogiannis

Hünkar Can Tunç Mahesh Viswanathan



Concurrency: Software and Challenges

� Ubiquitous computing paradigm.

� Analysis of concurrent programs is a major challenge.

� We need more efficient algorithms and data structures.

1



Dynamic Analyses for Detecting Concurrency Bugs

-- <> --

-- <> --

Program

Execution

Bug Found

Not Found

� Widely adopted (e.g., ThreadSanitizer, Helgrind).

� Requires establishing a causal ordering between the events.

� Causality is typically represented as a partial order.

2



Happens-Before (HB) Partial Order

t1 t2

1 acquire(`1)
2 write(x)
3 release(`1)
4 read(x)
5 acquire(`1)
6 read(x)
7 release(`1)

H
B

→ Events e2 and e4 are concurrent.

→ Events e2 and e6 are not concurrent.

Happens-Before defines data races in various memory models.

3



Happens-Before (HB) Partial Order

t1 t2

1 acquire(`1)
2 write(x)
3 release(`1)
4 read(x)
5 acquire(`1)
6 read(x)
7 release(`1)

H
B

→ Events e2 and e4 are concurrent.

→ Events e2 and e6 are not concurrent.

Happens-Before defines data races in various memory models.

3



Happens-Before (HB) Partial Order

t1 t2

1 acquire(`1)
2 write(x)
3 release(`1)
4 read(x)
5 acquire(`1)
6 read(x)
7 release(`1)

H
B

→ Events e2 and e4 are concurrent.

→ Events e2 and e6 are not concurrent.

Happens-Before defines data races in various memory models.

3



Happens-Before (HB) Partial Order

t1 t2

1 acquire(`1)
2 write(x)
3 release(`1)
4 read(x)
5 acquire(`1)
6 read(x)
7 release(`1)

H
B

→ Events e2 and e4 are concurrent.

→ Events e2 and e6 are not concurrent.

Happens-Before defines data races in various memory models.

3



Contributions

Tree Clocks: A new data structure

� Can be used to compute Happens-Before efficiently.

- Optimal data structure for Happens-Before.

� Versatile data structure.

- Other partial orders can also be computed efficiently.

- Schedulable-Happens-Before

- Mazurkiewicz

� Significant speedups compared to vector clocks.

4



Contributions

Tree Clocks: A new data structure

� Can be used to compute Happens-Before efficiently.

- Optimal data structure for Happens-Before.

� Versatile data structure.

- Other partial orders can also be computed efficiently.

- Schedulable-Happens-Before

- Mazurkiewicz

� Significant speedups compared to vector clocks.

4



Contributions

Tree Clocks: A new data structure

� Can be used to compute Happens-Before efficiently.

- Optimal data structure for Happens-Before.

� Versatile data structure.

- Other partial orders can also be computed efficiently.

- Schedulable-Happens-Before

- Mazurkiewicz

� Significant speedups compared to vector clocks.

4



Background: Vector Timestamps

� The knowledge set of a thread t can be succinctly captured by a function:

Vt : Threads → N

� Vt(t
′) gives the last event of t ′ that t knows about.

� t knows about all preceding events as well.

Vt2 = [
t1
27,

t2
3,

t3
9,

t4
45,

t5
17,

t6
26]

- t2 knows of the first 27 events of t1.

- t2 has performed 3 events.

Operations

V1 v V2 iff ∀t : V1(t) ≤ V2(t) (Comparison)

V1 tV2 = λt : max(V1(t),V2(t)) (Join)

5



Background: Vector Timestamps

� The knowledge set of a thread t can be succinctly captured by a function:

Vt : Threads → N

� Vt(t
′) gives the last event of t ′ that t knows about.

� t knows about all preceding events as well.

Vt2 = [
t1
27,

t2
3,

t3
9,

t4
45,

t5
17,

t6
26]

- t2 knows of the first 27 events of t1.

- t2 has performed 3 events.

Operations

V1 v V2 iff ∀t : V1(t) ≤ V2(t) (Comparison)

V1 tV2 = λt : max(V1(t),V2(t)) (Join)

5



Background: Vector Timestamps

� The knowledge set of a thread t can be succinctly captured by a function:

Vt : Threads → N

� Vt(t
′) gives the last event of t ′ that t knows about.

� t knows about all preceding events as well.

Vt2 = [
t1
27,

t2
3,

t3
9,

t4
45,

t5
17,

t6
26]

- t2 knows of the first 27 events of t1.

- t2 has performed 3 events.

Operations

V1 v V2 iff ∀t : V1(t) ≤ V2(t) (Comparison)

V1 tV2 = λt : max(V1(t),V2(t)) (Join)

5



Background: Implementing Vector Timestamps

Just use a vector clock VCt = [27, 3, 9, 45, 17, 26]

Vector Clock Join VC1 ← VC1 tVC2

� For each thread t:

� If VC1[t] < VC2[t]

� VC1[t]← VC2[t]

Vector Clock Copy VC1 ← VC2

� For each thread t:

� VC1[t]← VC2[t]

Each operation takes O(T ) time, for T threads

6



Background: Computing Happens-Before with Vector Clocks

� One vector clock Ct per thread t

� One vector clock C` per lock `

Algorithm: Happens-Before (HB)

1 procedure acquire(t, `)

2 Ct ← Ct t C`; /* Vector clock join */

3 procedure release(t, `)

4 C` = Ct ; /* Vector clock copy */

� Every vector clock operation costs O(T )

� T is the number of threads

� When threads are many, the complexity is quadratic O(N · T )

� N is the number of acquire/release events

7



Background: Computing Happens-Before with Vector Clocks

� One vector clock Ct per thread t

� One vector clock C` per lock `

Algorithm: Happens-Before (HB)

1 procedure acquire(t, `)

2 Ct ← Ct t C`; /* Vector clock join */

3 procedure release(t, `)

4 C` = Ct ; /* Vector clock copy */

� Every vector clock operation costs O(T )

� T is the number of threads

� When threads are many, the complexity is quadratic O(N · T )

� N is the number of acquire/release events

7



Overhead of Vector Clocks

� Every vector clock join takes O(T ) time.

� Certain steps in the join operation can be vacuous.

Can we do sub-linear joins?

−→ Sub-linear means skip looking at certain entries. How?

−→ Tree clocks address this challenge.

t1 t2

e1

e3

e2
join

Ct1 = [27, 3, 9, 45, 17, 26]

Ct1 = [28, 6, 9, 45, 17, 26]

Ct2 = [11, 6, 5, 32, 14, 20]

8



Overhead of Vector Clocks

� Every vector clock join takes O(T ) time.

� Certain steps in the join operation can be vacuous.

Can we do sub-linear joins?

−→ Sub-linear means skip looking at certain entries. How?

−→ Tree clocks address this challenge.

t1 t2

e1

e3

e2
join

Ct1 = [27, 3, 9, 45, 17, 26]

Ct1 = [28, 6, 9, 45, 17, 26]

Ct2 = [11, 6, 5, 32, 14, 20]

8



Our Contribution: Tree Clock Data Structure

� Drop-in replacement of vector clocks.

� Tree clocks maintain information hierarchically.

� Nodes store local times of a thread + metadata.

� Tree structure records how information has been obtained transitively.

Ct4 = [
t1
1,

t2
2,

t3
13,

t4
9]

t4, 9,⊥

t2, 2, 1

t1, 1, 1

t3, 13, 5

� Only slightly more information is stored compared to vector clocks.

Enough to enable tree clocks to support sub-linear join and (monotone) copy!

9



Our Contribution: Tree Clock Data Structure

� Drop-in replacement of vector clocks.

� Tree clocks maintain information hierarchically.

� Nodes store local times of a thread + metadata.

� Tree structure records how information has been obtained transitively.

Ct4 = [
t1
1,

t2
2,

t3
13,

t4
9]

t4, 9,⊥

t2, 2, 1

t1, 1, 1

t3, 13, 5

� Only slightly more information is stored compared to vector clocks.

Enough to enable tree clocks to support sub-linear join and (monotone) copy!

9



Our Contribution: Tree Clock Data Structure

� Drop-in replacement of vector clocks.

� Tree clocks maintain information hierarchically.

� Nodes store local times of a thread + metadata.

� Tree structure records how information has been obtained transitively.

Ct4 = [
t1
1,

t2
2,

t3
13,

t4
9]

t4, 9,⊥

t2, 2, 1

t1, 1, 1

t3, 13, 5

� Only slightly more information is stored compared to vector clocks.

Enough to enable tree clocks to support sub-linear join and (monotone) copy!

9



Tree Clock Data Structure

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

Root: the tree clock belongs to t2t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2 knows of time 14 of t5t2 knows of time 14 of t5

↪→ It learned this transitively, by learning of time 5 of t3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

↪→ t3 learned of time 14 of t5 when t3’s time was 3

This structure allows for sub-linear time join and (monotone) copy.

10



Tree Clock Data Structure

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

Root: the tree clock belongs to t2

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2 knows of time 14 of t5t2 knows of time 14 of t5

↪→ It learned this transitively, by learning of time 5 of t3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

↪→ t3 learned of time 14 of t5 when t3’s time was 3

This structure allows for sub-linear time join and (monotone) copy.

10



Tree Clock Data Structure

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

Root: the tree clock belongs to t2t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2 knows of time 14 of t5

t2 knows of time 14 of t5

↪→ It learned this transitively, by learning of time 5 of t3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

↪→ t3 learned of time 14 of t5 when t3’s time was 3

This structure allows for sub-linear time join and (monotone) copy.

10



Tree Clock Data Structure

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

Root: the tree clock belongs to t2

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2 knows of time 14 of t5

t2 knows of time 14 of t5

↪→ It learned this transitively, by learning of time 5 of t3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

↪→ t3 learned of time 14 of t5 when t3’s time was 3

This structure allows for sub-linear time join and (monotone) copy.

10



Tree Clock Data Structure

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

Root: the tree clock belongs to t2

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2 knows of time 14 of t5

t2 knows of time 14 of t5

↪→ It learned this transitively, by learning of time 5 of t3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

↪→ t3 learned of time 14 of t5 when t3’s time was 3

This structure allows for sub-linear time join and (monotone) copy.

10



Tree Clock Data Structure

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

Root: the tree clock belongs to t2

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2 knows of time 14 of t5

t2 knows of time 14 of t5

↪→ It learned this transitively, by learning of time 5 of t3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

t2, 6,⊥

t1, 11, 2t3, 5, 4

t4, 32, 1t6, 20, 2t5, 14, 3

↪→ t3 learned of time 14 of t5 when t3’s time was 3

This structure allows for sub-linear time join and (monotone) copy.

10



TC12 .Join(TC1)

t1, 16,⊥

t3, 17, 7t2, 20, 9

t7, 11, 2t6, 15, 8

t10, 2, 15

t5, 4, 14

t9, 10, 4

t12, 2, 4t11, 8, 7

t4, 23, 18

t8, 2, 19

TC1

t12, 25,⊥

t7, 24, 16

t11, 15, 7

t2, 14, 9

t6, 15, 8

t4, 31, 20

t5, 8, 20

t1, 4, 4

t3, 10, 4

t8, 10, 8

t9, 16, 5

t10, 6, 12

TC12

t12, 25,⊥

t7, 24, 16

t11, 15, 7t4, 31, 20

t5, 8, 20

t8, 10, 8

t9, 16, 5

t10, 6, 12

t1, 16, 25

t3, 17, 7t2, 20, 9

t6, 15, 8

TC12 .Join(TC1)Accessed + Updated

Accessed

Performed join without accessing the whole tree!

Ct1=[

t1

16 ,

t2

20 ,

t3

17 ,

t4

23 ,

t5

4 ,

t6

15 ,

t7

11 ,

t8

8 ,

t9

10 ,

t10

2 ,

t11

8 ,

t12

7 ]

11



TC12 .Join(TC1)

t1, 16,⊥

t3, 17, 7t2, 20, 9

t7, 11, 2t6, 15, 8

t10, 2, 15

t5, 4, 14

t9, 10, 4

t12, 2, 4t11, 8, 7

t4, 23, 18

t8, 2, 19

TC1

t12, 25,⊥

t7, 24, 16

t11, 15, 7

t2, 14, 9

t6, 15, 8

t4, 31, 20

t5, 8, 20

t1, 4, 4

t3, 10, 4

t8, 10, 8

t9, 16, 5

t10, 6, 12

TC12

t12, 25,⊥

t7, 24, 16

t11, 15, 7t4, 31, 20

t5, 8, 20

t8, 10, 8

t9, 16, 5

t10, 6, 12

t1, 16, 25

t3, 17, 7t2, 20, 9

t6, 15, 8

TC12 .Join(TC1)Accessed + Updated

Accessed

Performed join without accessing the whole tree!

Ct1=[

t1

16 ,

t2

20 ,

t3

17 ,

t4

23 ,

t5

4 ,

t6

15 ,

t7

11 ,

t8

8 ,

t9

10 ,

t10

2 ,

t11

8 ,

t12

7 ]

11



TC12 .Join(TC1)

t1, 16,⊥

t3, 17, 7t2, 20, 9

t7, 11, 2t6, 15, 8

t10, 2, 15

t5, 4, 14

t9, 10, 4

t12, 2, 4t11, 8, 7

t4, 23, 18

t8, 2, 19

TC1

t12, 25,⊥

t7, 24, 16

t11, 15, 7

t2, 14, 9

t6, 15, 8

t4, 31, 20

t5, 8, 20

t1, 4, 4

t3, 10, 4

t8, 10, 8

t9, 16, 5

t10, 6, 12

TC12

t12, 25,⊥

t7, 24, 16

t11, 15, 7t4, 31, 20

t5, 8, 20

t8, 10, 8

t9, 16, 5

t10, 6, 12

t1, 16, 25

t3, 17, 7t2, 20, 9

t6, 15, 8

TC12 .Join(TC1)Accessed + Updated

Accessed

Performed join without accessing the whole tree!

Ct1=[

t1

16 ,

t2

20 ,

t3

17 ,

t4

23 ,

t5

4 ,

t6

15 ,

t7

11 ,

t8

8 ,

t9

10 ,

t10

2 ,

t11

8 ,

t12

7 ]

11



TC12 .Join(TC1)

t1, 16,⊥

t3, 17, 7t2, 20, 9

t7, 11, 2t6, 15, 8

t10, 2, 15

t5, 4, 14

t9, 10, 4

t12, 2, 4t11, 8, 7

t4, 23, 18

t8, 2, 19

TC1

t12, 25,⊥

t7, 24, 16

t11, 15, 7

t2, 14, 9

t6, 15, 8

t4, 31, 20

t5, 8, 20

t1, 4, 4

t3, 10, 4

t8, 10, 8

t9, 16, 5

t10, 6, 12

TC12

t12, 25,⊥

t7, 24, 16

t11, 15, 7t4, 31, 20

t5, 8, 20

t8, 10, 8

t9, 16, 5

t10, 6, 12

t1, 16, 25

t3, 17, 7t2, 20, 9

t6, 15, 8

TC12 .Join(TC1)Accessed + Updated

Accessed

Performed join without accessing the whole tree!

Ct1=[

t1

16 ,

t2

20 ,

t3

17 ,

t4

23 ,

t5

4 ,

t6

15 ,

t7

11 ,

t8

8 ,

t9

10 ,

t10

2 ,

t11

8 ,

t12

7 ]

11



Drop-in Replacement

Algorithm: Happens-Before with Vector Clocks.

1 procedure acquire(t, `)

2 Ct .VectorClockJoin(C`)

3 procedure release(t, `)

4 C`.VectorClockCopy(Ct)

Algorithm: Happens-Before with Tree Clocks.

1 procedure acquire(t, `)

2 Ct .TreeClockJoin(C`)

3 procedure release(t, `)

4 C`.TreeClockCopy(Ct)

12



Tree Clock Optimality

What is the optimal data structure for Happens-Before?

Treeclock optimality for Happens-Before

No other data structure can offer asymptotically better performance.

� Tree clocks perform at most 3 times more work than necessary.

13



Tree Clock Optimality

What is the optimal data structure for Happens-Before?

Treeclock optimality for Happens-Before

No other data structure can offer asymptotically better performance.

� Tree clocks perform at most 3 times more work than necessary.

13



Tree Clock Optimality

What is the optimal data structure for Happens-Before?

Treeclock optimality for Happens-Before

No other data structure can offer asymptotically better performance.

� Tree clocks perform at most 3 times more work than necessary.

13



Tree Clock Optimality

t1, 16,⊥

t3, 17, 7t2, 20, 9

t7, 11, 2t6, 15, 8

t10, 2, 15

t5, 4, 14

t9, 10, 4

t12, 2, 4t11, 8, 7

t4, 23, 18

t8, 2, 19

TC1

Accessed + Updated

Accessed

Vector time work VTWork(σ)

VTWork(σ) = the smallest number of data-structure accesses for processing σ

Tree clock work TCWork(σ)

TCWork(σ) = the total number of tree clock entries accessed for processing σ

Vector clock work VCWork(σ)

VCWork(σ) = the total number of vector clock entries accessed for processing σ

14



Tree Clock Optimality

t1, 16,⊥

t3, 17, 7t2, 20, 9

t7, 11, 2t6, 15, 8

t10, 2, 15

t5, 4, 14

t9, 10, 4

t12, 2, 4t11, 8, 7

t4, 23, 18

t8, 2, 19

TC1

Accessed + Updated

Accessed

Vector time work VTWork(σ)

VTWork(σ) = the smallest number of data-structure accesses for processing σ

Tree clock work TCWork(σ)

TCWork(σ) = the total number of tree clock entries accessed for processing σ

Vector clock work VCWork(σ)

VCWork(σ) = the total number of vector clock entries accessed for processing σ

14



Tree Clock Optimality

t1, 16,⊥

t3, 17, 7t2, 20, 9

t7, 11, 2t6, 15, 8

t10, 2, 15

t5, 4, 14

t9, 10, 4

t12, 2, 4t11, 8, 7

t4, 23, 18

t8, 2, 19

TC1

Accessed + Updated

Accessed

Vector time work VTWork(σ)

VTWork(σ) = the smallest number of data-structure accesses for processing σ

Tree clock work TCWork(σ)

TCWork(σ) = the total number of tree clock entries accessed for processing σ

Vector clock work VCWork(σ)

VCWork(σ) = the total number of vector clock entries accessed for processing σ

14



Data Structure Optimality for Happens-Before

t1, 16,⊥

t3, 17, 7t2, 20, 9

t7, 11, 2t6, 15, 8

t10, 2, 15

t5, 4, 14

t9, 10, 4

t12, 2, 4t11, 8, 7

t4, 23, 18

t8, 2, 19

TC1

Accessed + Updated

Accessed

VCWork(σ) ≤ T · VTWork(σ)

VCWork(σ) can be T times worse

Theorem

TCWork(σ) ≤ 3 · VTWork(σ)

Tree clocks are (asymptotically) VT-optimal!

15



Data Structure Optimality for Happens-Before

t1, 16,⊥

t3, 17, 7t2, 20, 9

t7, 11, 2t6, 15, 8

t10, 2, 15

t5, 4, 14

t9, 10, 4

t12, 2, 4t11, 8, 7

t4, 23, 18

t8, 2, 19

TC1

Accessed + Updated

Accessed

VCWork(σ) ≤ T · VTWork(σ)

VCWork(σ) can be T times worse

Theorem

TCWork(σ) ≤ 3 · VTWork(σ)

Tree clocks are (asymptotically) VT-optimal!

15



Beyond Happens-Before

� Tree clocks can be used to compute other partial orders.

Schedulable-Happens-Before (SHB)

- Used in sound data race detection1

t1 t2 t3

1 write(x)
2 acquire(`1)
3 write(x)
4 release(`1)
5 read(x)
6 acquire(`1)
7 release(`1)
8 write(x)

S
H

B
SH

B

Mazurkiewicz (MAZ)

- Used in dynamic partial order

reduction in model checking of

concurrent programs2.

t1 t2 t3

1 write(x)
2 acquire(`1)
3 write(x)
4 release(`1)
5 read(x)
6 acquire(`1)
7 release(`1)
8 write(x)

M
A

Z
M

A
Z

MAZ

M
A

Z

16



Beyond Happens-Before

� Tree clocks can be used to compute other partial orders.

Schedulable-Happens-Before (SHB)

- Used in sound data race detection1

t1 t2 t3

1 write(x)
2 acquire(`1)
3 write(x)
4 release(`1)
5 read(x)
6 acquire(`1)
7 release(`1)
8 write(x)

S
H

B
SH

B

Mazurkiewicz (MAZ)

- Used in dynamic partial order

reduction in model checking of

concurrent programs2.

t1 t2 t3

1 write(x)
2 acquire(`1)
3 write(x)
4 release(`1)
5 read(x)
6 acquire(`1)
7 release(`1)
8 write(x)

M
A

Z
M

A
Z

MAZ

M
A

Z

1U. Mathur, D. Kini, M. Viswanathan. What Happens-after the First Race? Enhancing the

Predictive Power of Happens-before Based Dynamic Race Detection. OOPSLA’18.

16



Beyond Happens-Before

� Tree clocks can be used to compute other partial orders.

Schedulable-Happens-Before (SHB)

- Used in sound data race detection1

t1 t2 t3

1 write(x)
2 acquire(`1)
3 write(x)
4 release(`1)
5 read(x)
6 acquire(`1)
7 release(`1)
8 write(x)

S
H

B
SH

B

Mazurkiewicz (MAZ)

- Used in dynamic partial order

reduction in model checking of

concurrent programs2.

t1 t2 t3

1 write(x)
2 acquire(`1)
3 write(x)
4 release(`1)
5 read(x)
6 acquire(`1)
7 release(`1)
8 write(x)

M
A

Z
M

A
Z

MAZ

M
A

Z

1U. Mathur, D. Kini, M. Viswanathan. What Happens-after the First Race? Enhancing the

Predictive Power of Happens-before Based Dynamic Race Detection. OOPSLA’18.
2C. Flanagan, P. Godefroid. Dynamic Partial-Order Reduction for Model Checking Software.

POPL’05. 16



Experimental Results

� 153 benchmark traces

- Based on standard Java and OpenMP benchmark suites.

� Implemented HB, SHB and MAZ with both tree clocks and vector clocks.

� Measured the time in the following tasks:

� Compute the partial order.

� Perform the race-detection analysis.

Mazurkiewicz Schedulable- Happens-Before

Happens-Before

Partial Order 2.02× 2.66× 2.97×
Partial Order + Analysis 1.49× 1.80× 1.11×

Significant speedup by just replacing vector clocks with tree clocks!

17



Experimental Results

� 153 benchmark traces

- Based on standard Java and OpenMP benchmark suites.

� Implemented HB, SHB and MAZ with both tree clocks and vector clocks.

� Measured the time in the following tasks:

� Compute the partial order.

� Perform the race-detection analysis.

Mazurkiewicz Schedulable- Happens-Before

Happens-Before

Partial Order 2.02× 2.66× 2.97×
Partial Order + Analysis 1.49× 1.80× 1.11×

Significant speedup by just replacing vector clocks with tree clocks!

17



Experimental Results - Scalability

� Controlled experiment: threads randomly communicate over a single lock.

- Theoretical speedup: 4×
- Observed speedup: 1.33×

0 100 200 300
Threads

0

10

20

30

Ti
m

e 
(s

)

VC
TC

18



Experimental Results - Data Structure Optimality for HB

Theorem

TCWork(σ) ≤ 3 · VTWork(σ)

100 101 102
VCWork(σ)/VTWork(σ)

1

2

3

4

TC
W
or
k(
σ)
/V
TW

or
k(
σ)

19



Conclusion

Tree clocks:

� Drop-in replacement of vector clocks.

� Tree clocks support join and (monotone) copy in sub-linear time.

� Optimal data structure for Happens-Before (asymptotically).

� Experimental results confirm the potential of tree clocks.

Thank you!

20



Conclusion

Tree clocks:

� Drop-in replacement of vector clocks.

� Tree clocks support join and (monotone) copy in sub-linear time.

� Optimal data structure for Happens-Before (asymptotically).

� Experimental results confirm the potential of tree clocks.

Thank you!

20



Conclusion

Tree clocks:

� Drop-in replacement of vector clocks.

� Tree clocks support join and (monotone) copy in sub-linear time.

� Optimal data structure for Happens-Before (asymptotically).

� Experimental results confirm the potential of tree clocks.

Thank you!

20



Conclusion

Tree clocks:

� Drop-in replacement of vector clocks.

� Tree clocks support join and (monotone) copy in sub-linear time.

� Optimal data structure for Happens-Before (asymptotically).

� Experimental results confirm the potential of tree clocks.

Thank you!

20



Conclusion

Tree clocks:

� Drop-in replacement of vector clocks.

� Tree clocks support join and (monotone) copy in sub-linear time.

� Optimal data structure for Happens-Before (asymptotically).

� Experimental results confirm the potential of tree clocks.

Thank you!

20


