A Tree Clock Data Structure for Causal Orderings
in Concurrent Executions

Umang Mathur Andreas Pavlogiannis

Hinkar Can Tung Mahesh Viswanathan

ERINUS NIvERSITY OF
95 — I

National University I L LI N o I S

I AARHUS UNIVERSITY PODADACETATO! o

Concurrency: Software and Challenges

J APacHE sg =L %)

MacOs QN33013 | jux

1

o7
Seark” TensorFlow

e Ubiquitous computing paradigm.
e Analysis of concurrent programs is a major challenge.

e We need more efficient algorithms and data structures.

Dynamic Analyses for Detecting Concurrency Bugs

FCEE __~»Bug Found

~~Not Found

e Widely adopted (e.g., ThreadSanitizer, Helgrind).
e Requires establishing a causal ordering between the events.

e Causality is typically represented as a partial order.

Happens-Before (HB) Partial Order

t tr

acquire(¥y)
write(x)

release(¢;
£ . read(x)

cquire(fy)
read(x)
release(¢;)

~NOoO o1 WwWwN

Happens-Before (HB) Partial Order

t tr

acquire(¢7)
write(x
release((ﬁz — Events e, and e4 are concurrent.
’{l\{ read(x)
acquire(¢1)
read(x)
release(/1)

~NOoO o1 WwWwN

Happens-Before (HB) Partial Order

t t2
1| acquire(¢y)
2| write(x)
3| release(/; — Events e, and e are concurrent.
4 ’{l\{ read(x)
5 acquire(f1) — Events e, and e are not concurrent.
6 read(x)
7 release(/1)

Happens-Before (HB) Partial Order

t t2
1| acquire(¢y)
2| write(x)
3| release(/; — Events e, and e are concurrent.
4 ’{l\{ read(x)
5 acquire((1) — Events e, and e are not concurrent.
6 read(x)
7 release(/1)

Happens-Before defines data races in various memory models.

Contributions

Tree Clocks: A new data structure

e Can be used to compute Happens-Before efficiently.

- Optimal data structure for Happens-Before.

Contributions

Tree Clocks: A new data structure

e Can be used to compute Happens-Before efficiently.
- Optimal data structure for Happens-Before.
e Versatile data structure.

- Other partial orders can also be computed efficiently.
- Schedulable-Happens-Before
- Mazurkiewicz

Contributions

Tree Clocks: A new data structure

e Can be used to compute Happens-Before efficiently.
- Optimal data structure for Happens-Before.
e Versatile data structure.

- Other partial orders can also be computed efficiently.
- Schedulable-Happens-Before
- Mazurkiewicz

e Significant speedups compared to vector clocks.

Background: Vector Timestamps

e The knowledge set of a thread t can be succinctly captured by a function:

V;: Threads -+ N

o V,(t') gives the last event of t’ that t knows about.

e t knows about all preceding events as well.

Background: Vector Timestamps

e The knowledge set of a thread t can be succinctly captured by a function:

V;: Threads -+ N

o V,(t') gives the last event of t’ that t knows about.

e t knows about all preceding events as well.

try t3

t1 b ty ts tp
Ve, = [27,3,9, 45,17, 26]

- t, knows of the first 27 events of t;.

- t, has performed 3 events.

Background: Vector Timestamps

e The knowledge set of a thread t can be succinctly captured by a function:

V;: Threads -+ N

o V,(t') gives the last event of t’ that t knows about.

e t knows about all preceding events as well.

try t3

t1 b ty ts tp
Ve, = [27,3,9, 45,17, 26]

- t, knows of the first 27 events of t;.

- t, has performed 3 events.

Operations
Vi TV, iff Vi Vi(t) < Vo(t) (Comparison)
ViUVsy = At max(Vl(t),Vg(t)) (Jom)

Background: Implementing Vector Timestamps

Just use a vector clock VC; = [27,3,9,45,17,26]

Vector Clock Join VC; + VC; LIVGC,

e For each thread t:
o If VCl[t] < VC2[t]
o VCi[t] + VCy[t]

Vector Clock Copy VC; + VG,

e For each thread t:
° VC1[t] +— VCz[t]

Each operation takes O(7) time, for 7 threads

Background: Computing Happens-Before with Vector Clocks

e One vector clock C; per thread t

e One vector clock C; per lock ¢

Algorithm: Happens-Before (HB)

1 procedure acquire(t, ¢)
2 ‘ C¢ +— CoUCy; /% Vector clock join */

3 procedure release(t, {)
4 ‘ Ce=Cy; /* Vector clock copy */

Background: Computing Happens-Before with Vector Clocks

e One vector clock C; per thread t

e One vector clock C; per lock ¢

Algorithm: Happens-Before (HB)

1 procedure acquire(t, ¢)
2 ‘ C¢ +— CoUCy; /% Vector clock join */

3 procedure release(t, {)
4 ‘ Ce=Cy; /* Vector clock copy */

e Every vector clock operation costs O(T)
e 7T is the number of threads
e When threads are many, the complexity is quadratic O(N - T)

e N\ is the number of acquire/release events

Overhead of Vector Clocks

e Every vector clock join takes O(T) time.
e Certain steps in the join operation can be vacuous.

t1 to
Cy, = [27,3,9,45,17,26] ==
on 2k C, =[11,6,5,32,14,20]
Cy, = [28,6,9, 45,17, 26] «63/

Overhead of Vector Clocks

e Every vector clock join takes O(T) time.
e Certain steps in the join operation can be vacuous.

Can we do sub-linear joins?
— Sub-linear means skip looking at certain entries. How?

— Tree clocks address this challenge.

t to

Cy, = [27,3,9,45,17,26] ==
€2

join
Cy, = [28,6,9,45,17, 26] /

€3

C, = [11,6,5,32, 14, 20]

Our Contribution: Tree Clock Data Structure

e Drop-in replacement of vector clocks.
e Tree clocks maintain information hierarchically.

e Nodes store local times of a thread 4+ metadata.
e Tree structure records how information has been obtained transitively.

Our Contribution: Tree Clock Data Structure

e Drop-in replacement of vector clocks.
e Tree clocks maintain information hierarchically.

e Nodes store local times of a thread 4+ metadata.
e Tree structure records how information has been obtained transitively.

t2,9, L
tp tp t3 g /\

C, =[1,3,13,9] — t:,13,5 t,2,1
|

t1,1,1

Our Contribution: Tree Clock Data Structure

e Drop-in replacement of vector clocks.
e Tree clocks maintain information hierarchically.

e Nodes store local times of a thread 4+ metadata.
e Tree structure records how information has been obtained transitively.

t2,9, L
tp tp t3 g /\

C, =[1,3,13,9] — t:,13,5 t,2,1
|

t1,1,1

e Only slightly more information is stored compared to vector clocks.

+

Enough to enable tree clocks to support sub-linear join and (monotone) copy!

Tree Clock Data Structure

tr,6, L
/\
t3,5,4 t,11,2

e
ts, 14,3 t5,20,2 t,32,1

10

Tree Clock Data Structure

ty,6, | ----------- » Root: the tree clock belongs to t3
/\
t3,5,4 t1,11,2

—
ts, 14,3 t,20,2 t;,32,1

10

Tree Clock Data Structure

ty,6, | ----------- » Root: the tree clock belongs to t3
/\
t3,5,4 t,11,2

T
ts, 14,3 15,20,2 t,32,1

N
A
N
N
N

y
to knows of time 14 of ts

10

Tree Clock Data Structure

ty,6, | ----------- » Root: the tree clock belongs to t3
/\
t3,5,4 t,11,2

T
ts, 14,3 15,20,2 t,32,1

N
A
N
N
N

y
to knows of time 14 of ts

— It learned this transitively, by learning of time 5 of t3

10

Tree Clock Data Structure

ty,6, | ----------- » Root: the tree clock belongs to t3
/\
t3,5,4 t,11,2

T
ts, 14,3 15,20,2 t,32,1

N
A
N
N
N

9
to knows of time 14 of ts
— It learned this transitively, by learning of time 5 of t3

< t3 learned of time 14 of ts when t3's time was 3

10

Tree Clock Data Structure

ty,6, | ----------- » Root: the tree clock belongs to t3
/\
t3,5,4 t,11,2

T
ts, 14,3 15,20,2 t,32,1

N
A
N
N
N

9
to knows of time 14 of ts
— It learned this transitively, by learning of time 5 of t3

< t3 learned of time 14 of ts when t3's time was 3

This structure allows for sub-linear time join and (monotone) copy.

10

TC12 J01n(TC1)

TC

t1,16, L

t,20,9

Y
ts,23,18 ts, 4,14 te, 15,8 t7,11,2

| | |
tg, 2,19 tg, 10,4 t10, 2,15

S
t11,8,7 t12,2,4

TCyo

t12,25, 1L
/\
t5,8,20 t7, 24,16

T

tg, 10,8 t1,4,4 t4,31,20 t11,15,7
| | |

tg, 16,5 t3,10,4 t2, 14,9
| |

t10, 6,12 ts,15,8

11

TC12 JOlIl(TCl)

t1,16, L t12,25, L
/\ /\
t, 20,9 t3,17,7 ts, 8, 20 t7,24,16
/\
ts,23,18 ts, 4,14 te, 15,8 t7,11,2 ts, 10,8 t1,4,4 t1,31,20 t11,15,7
| | | | | |
tg, 2,19 tg, 10,4 t10,2, 15 tg, 16,5 't3,10,4 t2, 14,9
S | |
t11,8,7 t12,2,4 t10, 6, 12 ts, 15,8
Accessed + Updated TCi2 .Join(TCq)
Accessed
t12,25, L

7
t1,16,25 ts, 8,20 t7,24,16

|
t,20,9 t3,17,7 tg,10,8 t4,31,20 t11,15,7
| |
te, 15,8 tg, 16,5
|
t10,6,12

11

TC12 JOlIl(TCl)

t1,16, L t12,25, L
/\ /\
t,20,9 t3,17,7 t5, 8,20 t7,24,16
—
ts,23,18 ts, 4,14 te, 15,8 t7,11,2 ts, 10,8 t1,4,4 t1,31,20 t11,15,7
[| | | | |
tg, 2,19 tg, 10,4 t10, 2,15 tg, 16,5 't3,10,4 t2, 14,9
S | |
t11,8,7 t12,2,4 t10, 6, 12 ts, 15,8
Accessed + Updated TCy2.J0in(TCy)
Accessed
t12,25, L

e
t1,16,25 ts, 8, 20 t7,24,16
Performed join without accessing the whole tree! — | —
t,20,9 t3,17,7 t3,10,8 t4,31,20 t11,15,7
| |
ts, 15,8 tg, 16,5
|
t10,6,12

11

TC12 JOlIl(TCl)

t1,16, L t12,25, L
/\ /\
t, 20,9 t3,17,7 ts, 8, 20 t7,24,16
/\
ts,23,18 ts, 4,14 te, 15,8 t7,11,2 ts, 10,8 t1,4,4 t1,31,20 t11,15,7
| | | | | |
tg, 2,19 tg, 10,4 t10,2, 15 tg, 16,5 't3,10,4 t2, 14,9
S | |
t11,8,7 t12,2,4 t10, 6, 12 ts, 15,8
Accessed + Updated TCi2 .Join(TCq)
Accessed
t12,25, L

e
t1,16,25 ts, 8, 20 t7,24,16
Performed join without accessing the whole tree! | —
t,20,9 t3,17,7 t3,10,8 t4,31,20 t11,15,7
| |
ts, 15,8 tg, 16,5
|

&1 & &) y 5 fg t7 tg t9g tjp t3 t12 o0 6.12
10, O,

c;, =(J1i6] . J208, B 1231 145 [15) . 11N [81, F10Y 128 188 . i

11

Drop-in Replacement

Algorithm: Happens-Before with Vector Clocks.

1 procedure acquire(t, ¢)
‘ C;.VectorClockJoin(Cy)

N

w

procedure release(t, {)
‘ Cy.VectorClockCopy(C;)

IS

Algorithm: Happens-Before with Tree Clocks.

[y

procedure acquire(t, £)
| C..TreeClockJoin(Cy)

N

w

procedure release(t, /)
‘ Cy.TreeClockCopy(C;)

£~

12

Tree Clock Optimality

What is the optimal data structure for Happens-Before?

13

Tree Clock Optimality

What is the optimal data structure for Happens-Before?

Treeclock optimality for Happens-Before

No other data structure can offer asymptotically better performance.

13

Tree Clock Optimality

What is the optimal data structure for Happens-Before?

Treeclock optimality for Happens-Before

No other data structure can offer asymptotically better performance.

e Tree clocks perform at most 3 times more work than necessary.

13

Tree Clock Optimality

TG
Accessed + Updated t1,16, L
Accessed —
t,20,9 t3,17,7

o

ts, 23,18 ts, 4, 14 te, 15,8 t7,11,2
I I I

tg, 2,19 tg, 10,4 t10, 2,15

S
t11,8,7 t12,2,4

VTWork(c) = the smallest number of data-structure accesses for processing o

14

ee Clock Optimality

TG
Accessed + Updated t1,16, L
Accessed —
t,20,9 t3,17,7

o

ts, 23,18 ts, 4, 14 te, 15,8 t7,11,2
I I I

tg, 2,19 tg, 10,4 t10, 2,15

S
t11,8,7 t12,2,4

VTWork(c) = the smallest number of data-structure accesses for processing o

Tree clock work TCWork(o)

TCWork(o) = the total number of tree clock entries accessed for processing o

14

ee Clock Optimality

TG
Accessed + Updated t1,16, L
Accessed —
t,20,9 t3,17,7

o

ts, 23,18 ts, 4, 14 te, 15,8 t7,11,2
I I I

tg, 2,19 tg, 10,4 t10, 2,15

S
t11,8,7 t12,2,4

VTWork(c) = the smallest number of data-structure accesses for processing o

Tree clock work TCWork(o)

TCWork(o) = the total number of tree clock entries accessed for processing o

Vector clock work VCWork(o)

VCWork(c) = the total number of vector clock entries accessed for processing o

14

Data Structure Optimality for Happens-Before

TC
Accessed + Updated t1,16, L
A d —
ceesse t5,20,9 t5,17,7

Y —
ts,23,18 ts, 4,14 te, 15,8 t7,11,2
| | I
tg, 2,19 tg, 10,4 ti0, 2,15

S
t11,8,7 ti12,2,4

VCWork(c) < T - VTWork(o)
VCWork(o) can be 7 times worse

15

Data Structure Optimality for Happens-Before

TC
Accessed + Updated t1,16, L
A d —
ceesse t5,20,9 t5,17,7

Y
ts,23,18 ts, 4,14 te, 15,8 t7,11,2
| | I
tg, 2,19 tg, 10,4 ti0, 2,15

S
t11,8,7 ti12,2,4

VCWork(c) < T - VTWork(o)
VCWork(o) can be 7 times worse

Theorem
TCWork(c) < 3 - VTWork(o)

Tree clocks are (asymptotically) VT-optimal!
15

Beyond Happens-Before

e Tree clocks can be used to compute other partial orders.

16

Beyond Happens-Before

e Tree clocks can be used to compute other partial orders.

Schedulable-Happens-Before (SHB)

- Used in sound data race detection?

t t t3

write(x)
acquire({1)
write(X\ &
release(él\'s?f
‘%:X‘ read(x)

acquire({1)
release(?;)

O ~NOOT S WN -

write(x)

1U. Mathur, D. Kini, M. Viswanathan. What Happens-after the First Race? Enhancing the
Predictive Power of Happens-before Based Dynamic Race Detection. OOPSLA'18.

16

Beyond Happens-Before

e Tree clocks can be used to compute other partial orders.

Schedulable-Happens-Before (SHB) Mazurkiewicz (MAZ)

- Used in sound data race detection! - Used in dynamic partial order
reduction in model checking of

concurrent programs2.

t1 tr t3 t1 tr
1 write(x) 1 write(x
2| acquire(1) 2| acquire(f1)
3| write(x)\ & 3| write(x)¢<7,
4 release(él\\%? 4| release(Ve
5 %\ Nread(x) 5 2\ read(x)
6 @ Yacquire(fy) 6 Yacquire(61
7 release(/;) 7 release(él)
8 write(x) 8 Wr/te()

1U. Mathur, D. Kini, M. Viswanathan. What Happens-after the First Race? Enhancing the

Predlctlve Power of Happens-before Based Dynamic Race Detection. OOPSLA'18.
2C. Flanagan, P. Godefroid. Dynamic Partial-Order Reduction for Model Checking Software.

POPL'05. 16

Experimental Results

e 153 benchmark traces

- Based on standard Java and OpenMP benchmark suites.
e Implemented HB, SHB and MAZ with both tree clocks and vector clocks.
e Measured the time in the following tasks:

e Compute the partial order.
e Perform the race-detection analysis.

17

Experimental Results

e 153 benchmark traces

- Based on standard Java and OpenMP benchmark suites.
e Implemented HB, SHB and MAZ with both tree clocks and vector clocks.
e Measured the time in the following tasks:

e Compute the partial order.
e Perform the race-detection analysis.

Mazurkiewicz Schedulable- Happens-Before
Happens-Before

Partial Order 2.02x 2.66 x 2.97x
Partial Order + Analysis 1.49x 1.80x 1.11x

Significant speedup by just replacing vector clocks with tree clocks!

17

Experimental Results - Scalability

e Controlled experiment: threads randomly communicate over a single lock.
- Theoretical speedup: 4x
- Observed speedup: 1.33x

30{ -+ VC
‘q-)’ 20+ /,/ /E//E
E ,/”’ ’/I:’////
= 101
A
oL , , ,
0 100 200 300
Threads

18

Experimental Results - Data Structure Optimality for HB

Theorem
TCWork(c) < 3 - VTWork(o)

54

¥

]

23 -

3 S

) .

X 2

-y o’ s

o . - -

§ oo .:\" -

2 14 et 277 .
10° 10! 102

VCWork(o)/VTWork(o)

19

Conclusion

Tree clocks:

e Drop-in replacement of vector clocks.

20

Conclusion

Tree clocks:

e Drop-in replacement of vector clocks.

e Tree clocks support join and (monotone) copy in sub-linear time.

20

Conclusion

Tree clocks:

e Drop-in replacement of vector clocks.
e Tree clocks support join and (monotone) copy in sub-linear time.

e Optimal data structure for Happens-Before (asymptotically).

20

Conclusion

Tree clocks:

e Drop-in replacement of vector clocks.
e Tree clocks support join and (monotone) copy in sub-linear time.
e Optimal data structure for Happens-Before (asymptotically).

e Experimental results confirm the potential of tree clocks.

20

Conclusion

Tree clocks:

e Drop-in replacement of vector clocks.
e Tree clocks support join and (monotone) copy in sub-linear time.
e Optimal data structure for Happens-Before (asymptotically).

e Experimental results confirm the potential of tree clocks.

Thank you!

20

