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Concurrency: Software and Challenges
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e Ubiquitous computing paradigm.
e Analysis of concurrent programs is a major challenge.

e We need more efficient algorithms and data structures.



Dynamic Analyses for Detecting Concurrency Bugs
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e Widely adopted (e.g., ThreadSanitizer, Helgrind).
e Requires establishing a causal ordering between the events.

e Causality is typically represented as a partial order.



Happens-Before (HB) Partial Order
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Happens-Before (HB) Partial Order
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Happens-Before (HB) Partial Order

t t2
1| acquire(¢y)
2| write(x)
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5 acquire(f1) — Events e, and e are not concurrent.
6 read(x)
7 release(/1)




Happens-Before (HB) Partial Order

t t2
1| acquire(¢y)
2| write(x)
3| release(/; — Events e, and e are concurrent.
4 ’{l\{ read(x)
5 acquire((1) — Events e, and e are not concurrent.
6 read(x)
7 release(/1)

Happens-Before defines data races in various memory models.
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Contributions

Tree Clocks: A new data structure

e Can be used to compute Happens-Before efficiently.
- Optimal data structure for Happens-Before.
e Versatile data structure.

- Other partial orders can also be computed efficiently.
- Schedulable-Happens-Before
- Mazurkiewicz

e Significant speedups compared to vector clocks.



Background: Vector Timestamps

e The knowledge set of a thread t can be succinctly captured by a function:

V;: Threads -+ N

o V,(t') gives the last event of t’ that t knows about.

e t knows about all preceding events as well.
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Background: Vector Timestamps

e The knowledge set of a thread t can be succinctly captured by a function:

V;: Threads -+ N

o V,(t') gives the last event of t’ that t knows about.

e t knows about all preceding events as well.

try t3

t1 b ty ts tp
Ve, = [27,3,9, 45,17, 26]

- t, knows of the first 27 events of t;.

- t, has performed 3 events.

Operations
Vi TV, iff Vi Vi(t) < Vo(t) (Comparison)
ViUVsy = At max(Vl(t),Vg(t)) (Jom)



Background: Implementing Vector Timestamps

Just use a vector clock VC; = [27,3,9,45,17,26]

Vector Clock Join VC; + VC; LIVGC,

e For each thread t:
o If VCl[t] < VC2[t]
o VCi[t] + VCy[t]

Vector Clock Copy VC; + VG,

e For each thread t:
° VC1[t] +— VCz[t]

Each operation takes O(7) time, for 7 threads



Background: Computing Happens-Before with Vector Clocks

e One vector clock C; per thread t

e One vector clock C; per lock ¢

Algorithm: Happens-Before (HB)

1 procedure acquire(t, ¢)
2 ‘ C¢ +— CoUCy; /% Vector clock join */

3 procedure release(t, {)
4 ‘ Ce=Cy; /* Vector clock copy */




Background: Computing Happens-Before with Vector Clocks

e One vector clock C; per thread t

e One vector clock C; per lock ¢

Algorithm: Happens-Before (HB)

1 procedure acquire(t, ¢)
2 ‘ C¢ +— CoUCy; /% Vector clock join */

3 procedure release(t, {)
4 ‘ Ce=Cy; /* Vector clock copy */

e Every vector clock operation costs O(T)
e 7T is the number of threads
e When threads are many, the complexity is quadratic O(N - T)

e N\ is the number of acquire/release events



Overhead of Vector Clocks

e Every vector clock join takes O(T) time.
e Certain steps in the join operation can be vacuous.
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Overhead of Vector Clocks

e Every vector clock join takes O(T) time.
e Certain steps in the join operation can be vacuous.

Can we do sub-linear joins?
— Sub-linear means skip looking at certain entries. How?

— Tree clocks address this challenge.

t to

Cy, = [27,3,9,45,17,26] ==
€2

join
Cy, = [28,6,9,45,17, 26] /

€3

C, = [11,6,5,32, 14, 20]



Our Contribution: Tree Clock Data Structure

e Drop-in replacement of vector clocks.
e Tree clocks maintain information hierarchically.

e Nodes store local times of a thread 4+ metadata.
e Tree structure records how information has been obtained transitively.
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Our Contribution: Tree Clock Data Structure

e Drop-in replacement of vector clocks.
e Tree clocks maintain information hierarchically.

e Nodes store local times of a thread 4+ metadata.
e Tree structure records how information has been obtained transitively.

t2,9, L
tp tp t3 g /\

C, =[1,3,13,9] — t:,13,5 t,2,1
|

t1,1,1

e Only slightly more information is stored compared to vector clocks.

+

Enough to enable tree clocks to support sub-linear join and (monotone) copy!



Tree Clock Data Structure
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Tree Clock Data Structure

ty,6, | ----------- » Root: the tree clock belongs to t3
/\
t3,5,4 t,11,2

T
ts, 14,3 15,20,2 t,32,1

N
A
N
N
N

9
to knows of time 14 of ts
— It learned this transitively, by learning of time 5 of t3

< t3 learned of time 14 of ts when t3's time was 3

This structure allows for sub-linear time join and (monotone) copy.
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TC12 J01n(TC1)

TC

t1,16, L

t,20,9

Y
ts,23,18 ts, 4,14 te, 15,8 t7,11,2

| | |
tg, 2,19 tg, 10,4 t10, 2,15

S
t11,8,7 t12,2,4

TCyo

t12,25, 1L
/\
t5,8,20 t7, 24,16

T

tg, 10,8 t1,4,4 t4,31,20 t11,15,7
| | |

tg, 16,5 t3,10,4 t2, 14,9
| |

t10, 6,12 ts,15,8

11



TC12 JOlIl(TCl)
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TC12 JOlIl(TCl)
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Drop-in Replacement

Algorithm: Happens-Before with Vector Clocks.

1 procedure acquire(t, ¢)
‘ C;.VectorClockJoin(Cy)

N

w

procedure release(t, {)
‘ Cy.VectorClockCopy(C;)

IS

Algorithm: Happens-Before with Tree Clocks.

[y

procedure acquire(t, £)
| C..TreeClockJoin(Cy)

N

w

procedure release(t, /)
‘ Cy.TreeClockCopy(C;)

£~
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Tree Clock Optimality

What is the optimal data structure for Happens-Before?
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Tree Clock Optimality

What is the optimal data structure for Happens-Before?

Treeclock optimality for Happens-Before

No other data structure can offer asymptotically better performance.

e Tree clocks perform at most 3 times more work than necessary.
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Tree Clock Optimality
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ee Clock Optimality
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I I I

tg, 2,19 tg, 10,4 t10, 2,15

S
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VTWork(c) = the smallest number of data-structure accesses for processing o

Tree clock work TCWork(o)

TCWork(o) = the total number of tree clock entries accessed for processing o

Vector clock work VCWork(o)

VCWork(c) = the total number of vector clock entries accessed for processing o
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Data Structure Optimality for Happens-Before
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Data Structure Optimality for Happens-Before

TC
Accessed + Updated t1,16, L
A d —
ceesse t5,20,9 t5,17,7

Y
ts,23,18 ts, 4,14 te, 15,8 t7,11,2
| | I
tg, 2,19 tg, 10,4 ti0, 2,15

S
t11,8,7 ti12,2,4

VCWork(c) < T - VTWork(o)
VCWork(o) can be 7 times worse

Theorem
TCWork(c) < 3 - VTWork(o)

Tree clocks are (asymptotically) VT-optimal!
15



Beyond Happens-Before

e Tree clocks can be used to compute other partial orders.
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Beyond Happens-Before

e Tree clocks can be used to compute other partial orders.

Schedulable-Happens-Before (SHB)

- Used in sound data race detection?

t t t3

write(x)
acquire({1)
write( X\ &
release(él\'s?f
‘%:X‘ read(x)

acquire({1)
release(?;)

O ~NOOT S WN -

write(x)

1U. Mathur, D. Kini, M. Viswanathan. What Happens-after the First Race? Enhancing the
Predictive Power of Happens-before Based Dynamic Race Detection. OOPSLA'18.
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Beyond Happens-Before

e Tree clocks can be used to compute other partial orders.

Schedulable-Happens-Before (SHB) Mazurkiewicz (MAZ)

- Used in sound data race detection! - Used in dynamic partial order
reduction in model checking of

concurrent programs2.

t1 tr t3 t1 tr
1 write(x) 1 write(x
2| acquire(1) 2| acquire(f1)
3| write(x)\ & 3| write(x)¢<7,
4 release(él\\%? 4| release( Ve
5 %\ Nread(x) 5 2\ read(x)
6 @ Yacquire(fy) 6 Yacquire( 61
7 release(/;) 7 release(él)
8 write(x) 8 Wr/te( )

1U. Mathur, D. Kini, M. Viswanathan. What Happens-after the First Race? Enhancing the

Predlctlve Power of Happens-before Based Dynamic Race Detection. OOPSLA'18.
2C. Flanagan, P. Godefroid. Dynamic Partial-Order Reduction for Model Checking Software.

POPL'05. 16



Experimental Results

e 153 benchmark traces

- Based on standard Java and OpenMP benchmark suites.
e Implemented HB, SHB and MAZ with both tree clocks and vector clocks.
e Measured the time in the following tasks:

e Compute the partial order.
e Perform the race-detection analysis.
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Experimental Results

e 153 benchmark traces

- Based on standard Java and OpenMP benchmark suites.
e Implemented HB, SHB and MAZ with both tree clocks and vector clocks.
e Measured the time in the following tasks:

e Compute the partial order.
e Perform the race-detection analysis.

Mazurkiewicz Schedulable- Happens-Before
Happens-Before

Partial Order 2.02x 2.66 x 2.97x
Partial Order + Analysis 1.49x 1.80x 1.11x

Significant speedup by just replacing vector clocks with tree clocks!
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Experimental Results - Scalability

e Controlled experiment: threads randomly communicate over a single lock.
- Theoretical speedup: 4x
- Observed speedup: 1.33x

30{ -+ VC
‘q-)’ 20+ /,/ /E//E
E ,/”’ ’/I:’////
= 101
A
oL , , ,
0 100 200 300
Threads
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Experimental Results - Data Structure Optimality for HB

Theorem
TCWork(c) < 3 - VTWork(o)
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Conclusion

Tree clocks:

e Drop-in replacement of vector clocks.
e Tree clocks support join and (monotone) copy in sub-linear time.
e Optimal data structure for Happens-Before (asymptotically).

e Experimental results confirm the potential of tree clocks.

Thank you!
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